Journal of Earth Science

, Volume 30, Issue 2, pp 407–421 | Cite as

Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments: IODP Expedition 339

  • Shereef A. BankoleEmail author
  • Jim Buckman
  • Dorrik Stow
  • Helen Lever
Biogeology and Marine Geology


The microstructural analysis of muds and mudrocks requires very high-resolution measurement. Recent advances in electron microscopy have contributed significantly to the improved characterisation of mudrock microstructures and their consequent petrophysical properties. However, imaging through electron microscopy is limited to small areas of coverage such that upscaling of these properties is a great challenge. In this paper, we develop a new methodology for multiple large-area imaging using scanning electron microscopy through automated acquisition and stitching from polished thin-sections and ion-milled samples. The process is fast, efficient and minimises user-input and bias. It can provide reliable, quantifiable data on sediment grain size, grain orientation, pore size and porosity. Limitations include the time involved for individual runs and manual segmentation, the large amount of computer memory required, and instrument resolution at the nano-scale. This method is applied to selected samples of Quaternary muddy sediments from the Iberian margin at IODP Site 1385. The section comprises finegrained (very fine clayey silts), mixed-composition, biogenic-terrigenous hemipelagites, with a pronounced but non-regular colour cyclicity. There is a multi-tiered and diverse trace fossil assemblage of the deep-water Zoophycos ichnofacies. The sediment microstructures show small-scale heterogeneity in all properties, and an overall random fabric with secondary preferred grain-alignment. These results on the fabric differ, in part, from previous studies of hemipelagic muds. Further work is underway on their comparison with other deep-water sediment facies.

Key Words

mudrocks microstructure microporosity grain-orientation hemipelagites trace fossils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is part of Shereef Bankole’s PhD programme at Heriot-Watt University, Edinburgh, United Kingdom. He appreciates the sponsorship received from Petroleum Technology Development Fund, Nigeria. The authors are grateful to Mark Curtis of the University of Oklahoma, United States of America for preparing the ion-milled samples. We thank the International Ocean Discovery Program for giving access to the core samples and Shereef is grateful to IODP technical staff (Walter Hale and Alex Wülbers) for their guidance and co-operation during the core sampling at MARUM IODP repository, Bremen, Germany. The final publication is available at Springer via

References Cited

  1. Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031–2059. CrossRefGoogle Scholar
  2. Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Grain-Size Analysis of Mudrocks: A New Semi-Automated Method from SEM Images. Journal of Petroleum Science and Engineering, 174: 244–256. CrossRefGoogle Scholar
  3. Bankole, S. A., Stow, D. A. V., Lever, H., et al., 2016. Microstructure of Mudrock and the Choice of Representative Sample, In: Fifth EAGE Shale Workshop. EAGE, Catania, ItalyGoogle Scholar
  4. Berens, P., 2009. CircStat: AMATLAB Toolbox for Circular Statistics. Journal of Statistical Software, 31(10): 1–21. CrossRefGoogle Scholar
  5. Bosl, W. J., Dvorkin, J., Nur, A., 1998. A Study of Porosity and Permeability Using a Lattice Boltzmann Simulation. Geophysical Research Letters, 25(9): 1475–1478. CrossRefGoogle Scholar
  6. Buckman, J., 2014. Use of Automated Image Acquisition and Stitching in Scanning Electron Microscopy: Imaging of Large Scale Areas of Materials at High Resolution. Microscopy and Analysis, 28: 13–15.Google Scholar
  7. Buckman, J., Bankole, S., Zihms, S., et al., 2017. Quantifying Porosity through Automated Image Collection and Batch Image Processing: Case Study of Three Carbonates and an Aragonite Cemented Sandstone. Geosciences, 7(3): 70. CrossRefGoogle Scholar
  8. Camp, W. K., Diaz, E., Wawak, B. E., 2013. Electron Microscopy of Shale Hydrocarbon Reservoirs. Association of Petroleum Geologists, TulsaGoogle Scholar
  9. Chambers, J. M., Cleveland, W. S., Kleiner, B., et al., 1984. Graphical Methods for Data Analysis. Journal of the Royal Statistical Society, 147(3): 513. Google Scholar
  10. Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665–677. CrossRefGoogle Scholar
  11. Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., et al., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales, Society of Petroleum Engineers—Canadian Unconventional Resources and International Petroleum Conference, CalgaryGoogle Scholar
  12. Davis, J. C., 1986. Statistics and Data Analysis in Geology, Wiley India. 656.Google Scholar
  13. Desbois, G., Urai, J. L., Kukla, P. A., 2009. Morphology of the Pore Space in Claystones—Evidence from BIB/FIB Ion Beam Sectioning and Cryo-SEM Observations. eEarth, 4(1): 15–22. CrossRefGoogle Scholar
  14. DeVasto, M. A., Czeck, D. M., Bhattacharyya, P., 2012. Using Image Analysis and ArcGIS® to Improve Automatic Grain Boundary Detection and Quantify Geological Images. Computers & Geosciences, 49: 38–45. CrossRefGoogle Scholar
  15. Fisher, N. I., 1993. Statistical Analysis of Circular Data. Cambridge University Press, New York, 277. CrossRefGoogle Scholar
  16. Francus, P., Pirard, E., 2004. Testing for Sources of Errors in Quantitative Image Analysis. In: Francus, P., ed., Image Analysis, Sediments and Paleoenvironments. Springer Netherlands, Dordrecht. 87–102. Google Scholar
  17. Grove, C., Jerram, D. A., 2011. JPOR: An ImageJ Macro to Quantify Total Optical Porosity from Blue-Stained Thin Sections. Computers & Geosciences, 37(11): 1850–1859. CrossRefGoogle Scholar
  18. Hemes, S., Desbois, G., Urai, J. L., et al., 2013. Variations in the Morphology of Porosity in the Boom Clay Formation: Insights from 2D High Resolution BIB-SEM Imaging and Mercury Injection Porosimetry. Netherlands Journal of Geosciences, 92(4): 275–300. CrossRefGoogle Scholar
  19. Hesse, R., 1975. Turbiditic and Non-Turbiditic Mudstone of Cretaceous Flysch Sections of the East Alps and other Basins. Sedimentology, 22(3): 387–416. CrossRefGoogle Scholar
  20. Hodell, D. A., Lourens, L., Stow, D. A. V., et al., 2013. The “Shackleton Site” (IODP Site U1385) on the Iberian Margin. Scientific Drilling, 16: 13–19. CrossRefGoogle Scholar
  21. Hodell, D. A., Lourens, L., Crowhurst, S., et al., 2015. A Reference Time Scale for Site U1385 (Shackleton Site) on the SW Iberian Margin. Global and Planetary Change, 133: 49–64. CrossRefGoogle Scholar
  22. Hoogakker, B. A. A., Rothwell, R. G., Rohling, E. J., et al., 2004. Variations in Terrigenous Dilution in Western Mediterranean Sea Pelagic Sediments in Response to Climate Change during the Last Glacial Cycle. Marine Geology, 211(1/2): 21–43. CrossRefGoogle Scholar
  23. Houben, M. E., Desbois, G., Urai, J. L., 2013. Pore Morphology and Distribution in the Shaly Facies of Opalinus Clay (Mont Terri, Switzerland): Insights from Representative 2D BIB-SEM Investigations on mm to nm Scale. Applied Clay Science, 71: 82–97. CrossRefGoogle Scholar
  24. Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., et al., 2012. Clay Fabrics in SAFOD Core Samples. Journal of Structural Geology, 43: 118–127. CrossRefGoogle Scholar
  25. Josh, M., Esteban, L., Delle Piane, C., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88–89: 107–124. CrossRefGoogle Scholar
  26. Kameda, A., Dvorkin, J., Keehm, Y., et al., 2006. Permeability-Porosity Transforms from Small Sandstone Fragments. Geophysics, 71(1): N11–N19. CrossRefGoogle Scholar
  27. Keller, L. M., Schuetz, P., Erni, R., et al., 2013. Characterization of Multi-Scale Microstructural Features in Opalinus Clay. Microporous and Mesoporous Materials, 170: 83–94. CrossRefGoogle Scholar
  28. Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341–362. CrossRefGoogle Scholar
  29. Lemmens, H., Richards, D., 2013. Multiscale Imaging of Shale Samples in the Scanning Electron Microscope. American Association of Petroleum Geologists Memoir, 27–35.
  30. Lonardelli, I., Wenk, H. R., Ren, Y., 2007. Preferred Orientation and Elastic Anisotropy in Shales. Geophysics, 72(2): D33–D40. CrossRefGoogle Scholar
  31. Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. CrossRefGoogle Scholar
  32. Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. CrossRefGoogle Scholar
  33. Lovie, S., 2005. Empirical Quantile-Quantile Plots. In: Encyclopedia of Statistics in Behavioral Science. John Wiley and Sons, Ltd., Chichester. 543–545. Google Scholar
  34. Macquaker, J. H. S., Howell, J. K., 1999. Small-Scale (<5.0 M) Vertical Heterogeneity in Mudstones: Implications for High-Resolution Stratigraphy in Siliciclastic Mudstone Successions. Journal of the Geological Society, 156(1): 105–112. CrossRefGoogle Scholar
  35. Mardia, K. V., Jupp, P. E., 2008. Directional Statistics, Directional Statistics. John Wiley and Sons, Inc. 432.
  36. Martínez-Nistal, A., Veniale, F., Setti, M., et al., 1999. A Scanning Electron Microscopy Image Processing Method for Quantifying Fabric Orientation of Clay Geomaterials. Applied Clay Science, 14(4): 235–243. CrossRefGoogle Scholar
  37. Moon, C. F., Hurst, C. W., 1984. Fabric of Muds and Shales: An Overview. Geological Society, London, Special Publications, 15(1): 579–593. CrossRefGoogle Scholar
  38. Munson, E. O., Chalmers, G. R. L., Bustin, R. M., et al., 2016. Utilizing Smear Mounts for X-Ray Diffraction as a Fully Quantitative Approach in Rapidly Characterizing the Mineralogy of Shale Gas Reservoirs. Journal of Unconventional Oil and Gas Resources, 14: 22–31. CrossRefGoogle Scholar
  39. Nishida, N., 2016. Microstructure of Muddy Contourites from the Gulf of Cádiz. Marine Geology, 377: 110–117. CrossRefGoogle Scholar
  40. Nishida, N., Ito, M., Inoue, A., et al., 2013. Clay Fabric of Fluid-Mud Deposits from Laboratory and Field Observations: Potential Application to the Stratigraphic Record. Marine Geology, 337: 1–8. CrossRefGoogle Scholar
  41. Pal, N. R., Pal, S. K., 1993. A Review on Image Segmentation Techniques. Pattern Recognition, 26(9): 1277–1294. CrossRefGoogle Scholar
  42. Pickering, K. T., Hiscott, R. N., 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. John Wiley and Sons, Chichester. 657Google Scholar
  43. Piper, D. J. W., 1977. Manual of Sedimentological Techniques. Departments of Geology and Oceanography, Dalhousie University, HalifaxGoogle Scholar
  44. Rodríguez-Tovar, F. J., Dorador, J., 2014. Ichnological Analysis of Pleistocene Sediments from the IODP Site U1385 “Shackleton Site” on the Iberian Margin: Approaching Paleoenvironmental Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 24–32. CrossRefGoogle Scholar
  45. Rodríguez-Tovar, F. J., Dorador, J., Grunert, P., et al., 2015. Deep-Sea Trace Fossil and Benthic Foraminiferal Assemblages across Glacial Terminations 1, 2 and 4 at the “Shackleton Site” (IODP Expedition 339, Site U1385). Global and Planetary Change, 133: 359–370. CrossRefGoogle Scholar
  46. Saraji, S., Piri, M., 2015. The Representative Sample Size in Shale Oil Rocks and Nano-Scale Characterization of Transport Properties. International Journal of Coal Geology, 146: 42–54. CrossRefGoogle Scholar
  47. Schindelin, J., Arganda-Carreras, I., Frise, E., et al., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9: 676–682. CrossRefGoogle Scholar
  48. Schindelin, J., Rueden, C. T., Hiner, M. C., et al., 2015. The ImageJ Ecosystem: An Open Platform for Biomedical Image Analysis. Molecular Reproduction and Development, 82(7/8): 518–529. CrossRefGoogle Scholar
  49. Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9(7): 671–675. CrossRefGoogle Scholar
  50. Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984). Pure Applied Chemistry, 57: 603–619. CrossRefGoogle Scholar
  51. Sokolov, V. N., O’Brien, N. R., 1990. A Fabric Classification of Argillaceous Rocks, Sediments, Soils. Applied Clay Science, 5(4): 353–360. CrossRefGoogle Scholar
  52. Stow, D. A. V., 1985. Fine-Grained Sediments in Deep Water: An Overview of Processes and Facies Models. Geo-Marine Letters, 5(1): 17–23. CrossRefGoogle Scholar
  53. Stow, D. A. V., Hernández-Molina, F. J., Llave, E., et al., 2013. The Cadiz Contourite Channel: Sandy Contourites, Bedforms and Dynamic Current Interaction. Marine Geology, 343: 99–114. CrossRefGoogle Scholar
  54. Stow, D. A. V., Huc, A. Y., Bertrand, P., 2001. Depositional Processes of Black Shales in Deep Water. Marine and Petroleum Geology, 18(4): 491–498. CrossRefGoogle Scholar
  55. Stow, D. A. V., Tabrez, A. R., 1998. Hemipelagites: Processes, Facies and Model. Geological Society, London, Special Publications, 129(1): 317–337. CrossRefGoogle Scholar
  56. Stow, D. A. V., 2005. Sedimentary Rocks in the Field: A Color Guide. Taylor and Francis Group, Florida. 320CrossRefGoogle Scholar
  57. Suttle, M. D., Genge, M. J., Russell, S. S., 2017. Shock Fabrics in Fine-Grained Micrometeorites. Meteoritics & Planetary Science, 52(10): 2258–2274. CrossRefGoogle Scholar
  58. Tovey, N. K., Smart, P., Hounslow, M. W., et al., 1992. Automatic Orientation Mapping of Some Types of Soil Fabric. Geoderma, 53(3/4): 179–200. CrossRefGoogle Scholar
  59. Uchman, A., Wetzel, A., 2011. Deep-Sea Ichnology: The Relationships between Depositional Environment and Endobenthic Organisms, Developments in Sedimentology, 63: 517–556. CrossRefGoogle Scholar
  60. Vanden-Bygaart, A. J., Protz, R., 1999. The Representative Elementary Area (REA) in Studies of Quantitative Soil Micromorphology. Geoderma, 89(3/4): 333–346. CrossRefGoogle Scholar
  61. Wang, Y., Zhu, Y. M., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945–955. CrossRefGoogle Scholar
  62. Wenk, H. R., Houtte, P. V., 2004. Texture and Anisotropy. Reports on Progress in Physics, 67(8): 1367–1428. CrossRefGoogle Scholar
  63. Wenk, H. R., Lutterotti, L., Kaercher, P., et al., 2014. Rietveld Texture Analysis from Synchrotron Diffraction Images. II. Complex Multiphase Materials and Diamond Anvil Cell Experiments. Powder Diffraction, 29(3): 220–232. CrossRefGoogle Scholar
  64. Wenk, H. R., Voltolini, M., Martin, M., et al., 2008. Preferred Orientations and Anisotropy in Shales: Callovo-Oxfordian Shale (France) and Opalinus Clay (Switzerland). Clays and Clay Minerals, 56(3): 285–306. CrossRefGoogle Scholar
  65. Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378–384. CrossRefGoogle Scholar
  66. Zaitoun, N. M., Aqel, M. J., 2015. Survey on Image Segmentation Techniques. Procedia Computer Science, 65: 797–806. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Petroleum EngineeringHeriot-Watt UniversityEdinburghUK
  2. 2.Department of Chemical and Geological SciencesAl-Hikmah UniversityIlorinNigeria

Personalised recommendations