Fluid Inclusion Evidences for the P-T Conditions of Quartz Veins Formation in the Black Shale-Hosted Gold Deposits, Bodaybo Ore Region, Russia

  • Natalia N. AnkushevaEmail author
  • Ekaterina E. Palenova
  • Svetlana N. Shanina


The P-T conditions of auriferous and barren quartz veins from Kopylovsky, Kavkaz and Krasnoye gold deposits in Proterozoic black shales of Bodaybo ore region are presented the first time in this study. Fluid inclusions trapped in auriferous quartz are aqueous Na±K-Mg chloride with salinity of 6 wt.%–8.8 wt.% NaCleqv. Homogenization temperatures vary from 260 to 350 °С, and calculated trapping pressures are 1.2–1.6 kbar. The fluids trapped in barren quartz have more complicated compositions with Na, K, Mg and Fe chlorides, salinity up to 13 wt.% NaCleqv, and homogenization temperatures ranging between 140 and 280 °С. The volatiles in fluids are dominated by H2O, followed by CO2 with minor amounts of CH4 and N2. We suppose that auriferous and barren quartz veins have been formed due to the basic metamorphogenic fluid as evidenced by the close slat and gas fluid composition.

Key Words

Bodaybo black shales gold deposits gold-bearing quartz barren veins fluid inclusions P-T conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was partially supported by the State Contract of the Institute of Mineralogy, South-Urals Federal Research Center of Mineralogy and Geoecology, Urals Branch, Russian Academy of Sciences (Project for 2019–2021) and the Basic Research Foundation of Russia (No. 16-05-00580). Sincere thanks go to the reviewers and the editors for their suggestions. The final publication is available at Springer via

References Cited

  1. Aksenov, I. M., 2004. Report on Results of Geological Exploration in 2000–2004 with Estimation of Reserves at the Kopylovsky Gold Deposit. Ugryum-Reka Open Joint Stock Company, Irkutsk (in Russian)Google Scholar
  2. Ankusheva, N. N., Palenova, E. E., Pankrushina, E. A., et al., 2019. Formation Conditions of Au-Bearing and Barren Quartz Veins of the Krasnoe Gold Deposit, Eastern Siberia: Fluid Inclusion and Isotopic Data. Mineralogy, 1: 57–71 (in Russian)Google Scholar
  3. Bodnar, R. J., Vityk, M. O., 1994. Interpretation of Microthermometric Data for H2O-NaCl Fluid Inclusions. In: De Vivo, B., Frezzotti, M. L., eds., Fluid Inclusions in Minerals: Methods and Applications. Virginia Polytechnic Institute and State University, Pontignana-Siena. 117–130Google Scholar
  4. Bottrell, S. H., Miller, M. F., 1990. The Geochemical Behavior of Nitrogen Compounds during the Formation of Black Shale-Hosted Quartz-Vein Gold Deposits, North Wales. Applied Geochemistry, 5(3): 289–296. CrossRefGoogle Scholar
  5. Bowers, T. S., 1991. The Deposition of Gold and other Metals: Pressure-Induced Fluid Immiscibility and Associated Stable Isotope Signatures. Geochimica et Cosmochimica Acta, 55(9): 2417–2434. CrossRefGoogle Scholar
  6. Brown, P. E., 1989. FLINCOR: A New Microcomputer Program for the Reduction and Investigation of Fluid Inclusion Data. American Mineralogist, 74(11): 1390–1393Google Scholar
  7. Budyak, A. E., Tarasova, Y. I., Chugaev, A. V., 2018. Structural and Geochemical Characteristics of Krasnoye Deposit, Baikal-Patom Highland, Russia. The International Youth School “Metallogeny of Ancient and Modern Oceans-2018, Volcanism and Ore Formation”. 199–202 (in Russian)Google Scholar
  8. Bukharov, A. A., Khalilov, V. A., Strakhova, T. M., et al., 1992. Geology of the Baikal-Patom Highland from New Data on U-Pb Dating of Accessory Zircon. Russian Geology and Geophysics, 33: 29–39Google Scholar
  9. Burke, E. A. J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1/2/3/4): 139–158. CrossRefGoogle Scholar
  10. Buryak, V. A., Bakulin, Y. I., 1998. Metallogeny of Gold. Vladivostok, Dalnauka. 369 (in Russian)Google Scholar
  11. Chugaev, A. V., Plotinskaya, O. Y., Chernyshev, I. V., et al., 2014. Lead Isotope Heterogeneity in Sulfides from Different Assemblages at the Verninskoe Gold Deposit (Baikal-Patom Highland, Russia). Doklady Earth Sciences, 457(1): 887–892. CrossRefGoogle Scholar
  12. Davis, D. W., Lowenstein, T. K., Spencer, R. J., 1990. Melting Behavior of Fluid Inclusions in Laboratory-Grown Halite Crystals in the Systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O and CaCl2-NaCl-H2O. Geochimica et Cosmochimica Acta, 54(3): 591–601. CrossRefGoogle Scholar
  13. Distler, V. V., Yudovskaya, M. A., Mitrofanov, G. L., et al., 2004. Geology, Composition, and Genesis of the Sukhoi Log Noble Metals Deposit, Russia. Ore Geology Reviews, 24(1/2): 7–44. CrossRefGoogle Scholar
  14. Gavrilov, A. M., Kryazhev, S. G., 2008. Mineralogical and Geochemical Features of Ores from Sukhoi Log Deposit. Razvedka i Ohrana Nedr, 8: 3–16 (in Russian)Google Scholar
  15. Gerasimov, N. S., Grebenshikova, V. I., Noskov, D. A., et al., 2007. On Early Paleozoic Age of the Angara-Vitim Batholith. In: Abstracts of All-Russian Scientific Meeting “Geodynamic Evolution of Lithosphere of the Central-Asian Mobile Belt (from Ocean to Continent)”. Institute of Earth Crust SB RAS, Oct. 9–14, 2007. Irkutsk. 49–51 (in Russian)Google Scholar
  16. Goldfarb, R. J., Baker, T., Dube, B., et al., 2005. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. G., et al., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado. 407–450Google Scholar
  17. Groves, D. I., Goldfarb, R. J., Robert, F., et al., 2003. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98(1): 1–29. Google Scholar
  18. Ivanov, A. I., 2008. Ozherelie Deposit—A New Type of Native Deposits in Bodaybo Ore District. Isvestiya of SB RAN: Geology, Development, and Mining of Ore Deposits, 32(6): 14–26 (in Russian)Google Scholar
  19. Kulchitskaya, А. А., Chernish, D. S., 2012. About the Possible H2 Inclusions in Minerals of Ancient Rocks from the Ukranian Shield. In: XIII All-Russia Thermobarogeochemistry Conference & IV APIFIS Symposium, Moscow. 204–207 (in Russian)Google Scholar
  20. Kuzmenko, A. A., 2013. Gold Mineralization in Artemovsky Ore Cluster on the Example of the Krasnoye Deposit (Bodaybo Region, Eastern Siberia). In: III All-Russia Youth Conference “New Knowledge in Ore Formation”. IGEM RAS, Moscow. 146–150 (in Russian)Google Scholar
  21. Large, R. R., Maslennikov, V. V., Robert, F., et al., 2007. Multistage Sedimentary and Metamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Economic Geology, 102(7): 1233–1267. CrossRefGoogle Scholar
  22. Laverov, N. P., Chernyshev, I. V., Chugaev, A. V., et al., 2007. Formation Stages of the Large-Scale Noble Metal Mineralization in the Sukhoi Log Deposit, East Siberia: Results of Isotope-Geochronological Study. Doklady Earth Sciences, 415(1): 810–814. CrossRefGoogle Scholar
  23. Migachev, I. F., Karpenko, I. A., Ivanov, A. I., 2008. The Sukhoi Log Deposit: Reappraisal and Estimation of Forecasting of Ore Field and District. Otechestvennaya Geologiya, 2: 55–67 (in Russian)Google Scholar
  24. Mironova, O. F., Naumov, V. B., Salazkin, A. N., 1992. Nitrogen in Mineral-Forming Fluids. Gas Chromatography Determination on Fluid Inclusions in Minerals. Geokhimiya, 7: 979–991Google Scholar
  25. Palenova, E. E., 2015. Mineralogy of the Kopylovskoe, Kavkaz, Krasnoe Gold Deposits (Artemovsk Ore Cluster, Bodaybo Region): [Dissertation]. IGEM RAS, Moscow. 24 (in Russian)Google Scholar
  26. Palenova, E. E., Belogub, E. V., Novoselov, K. A., et al., 2013. Mineralogical and Geochemical Characteristics of Carbonaceous Sequences at the Gold Objects in the Artemovskiy Cluster, Bodaybo District. Izv. SO RAEN. Geol., Poiski i Razvedka Rudn. Mestorozhd., 43(2): 29–36 (in Russian)Google Scholar
  27. Palenova, E. E., Belogub, E. V., Plotinskaya, O. Y., et al., 2015. Chemical Evolution of Pyrite at the Kopylovsky and Kavkaz Black Shale-Hosted Gold Deposits, Bodaybo District, Russia: Evidence from EPMA and LA-ICP-MS Data. Geology of Ore Deposits, 57(1): 64–84. CrossRefGoogle Scholar
  28. Palenova, E. E., Blinov, I. A., Zabotina, M. V., 2015. Ag Minerals in Quartz Veins of the Krasnoye Deposit, Bodaybo Region. Mineralogiya, 2: 9–17 (in Russian)Google Scholar
  29. Pankrushina, E. A., Votyakov, S. L., Ankusheva, N. N., et al., 2019. Quantative Determination of Gas Phase Composition of Fluid Inclusions in Quartz from Krasnoye Gold Deposit (the Eastern Siberia) by Raman Microspectroscopy. Minerals: Structure, Properties, Methods of Investigation. Proceedings in Earth and Environmental Sciences. Springer. 169–174Google Scholar
  30. Prokofiev, V. Y., Afanasieva, Z. B., Ivanova, G. F., et al., 1994. Study of Fluid Inclusions in Minerals of the Olympiandinskoe Au-(Sb-W) Deposit (Yenisey Ridge). Geokhimiya, 7: 1012–1029 (in Russian)Google Scholar
  31. Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12: 664Google Scholar
  32. Rundqvist, D. V., 1997. Time Factor in the Formation of Hydrothermal Deposits: Periods, Epochs, Megastages, and Stages of Ore Formation. Geol. Ore Deposits, 39(1): 8–19 (in Russian)Google Scholar
  33. Rusinov, V. L., Rusinova, O. V., Kryazhev, S. G., et al., 2008. Wall-Rock Metasomatism of Carbonaceous Terrigenous Rocks in the Lena Gold District. Geology of Ore Deposits, 50(1): 1–40. CrossRefGoogle Scholar
  34. Shepherd, T. J., Bottrell, S. H., Miller, M. F., 1991. Fluid Inclusion Volatiles as an Exploration Guide to Black Shale-Hosted Gold Deposits, Dolgellau Gold Belt, North Wales, UK. Journal of Geochemical Exploration, 42(1): 5–24. CrossRefGoogle Scholar
  35. Spencer, R. J., Møller, N., Weare, J. H., 1990. The Prediction of Mineral Solubilities in Natural Waters: A Chemical Equilibrium Model for the Na-K-Ca-Mg-Cl-SO4 System at Temperatures below 25 °C. Geochimica et Cosmochimica Acta, 54(3): 575–590. CrossRefGoogle Scholar
  36. Tarasova, Y. I., Budyak, A. Е., 2017. The Parameters of Ore-Forming Fluid of Chertovo Koryto Deposit. Main Problems in Study of Endogenic Ore Deposits: New Perspectives. All-Russia Conference. IGEM RAS, Moscow. 231–234 (in Russian)Google Scholar
  37. Thiery, R., Vidal, J., Dubessy, J., 1994. Phase Equilibria Modelling Applied to Fluid Inclusions: Liquid-Vapour Equilibria and Calculation of the Molar Volume in the CO2-CH4-N2 System. Geochimica et Cosmochimica Acta, 58(3): 1073–1082. CrossRefGoogle Scholar
  38. Van den Kerkhof, A. M., Hein, U. F., 2001. Fluid Inclusion Petrography. Lithos, 55(1/2/3/4): 27–47. CrossRefGoogle Scholar
  39. Xu, J., Hart, C. J. R., Wang, L., et al., 2011. Carbonic Fluid Overprints in Volcanogenic Massive Sulfide Deposits: Examples from the Kelan Volcanosedimentary Basin, Altaides, China. Economic Geology, 106(1): 145–155. CrossRefGoogle Scholar
  40. Yudovich, Y. E., Ketris, М. P., 1988. Geochemistry of Black Shales. Nauka, Leningrad. 272 (in Russian)Google Scholar
  41. Yudovskaya, M. A., Distler, V. V., Prokofiev, V. Y., et al., 2016. Gold Mineralisation and Orogenic Metamorphism in the Lena Province of Siberia as Assessed from Chertovo Koryto and Sukhoi Log Deposits. Geoscience Frontiers, 7(3): 453–481. CrossRefGoogle Scholar
  42. Yudovskaya, M. A., Distler, V. V., Rodionov, N. V., et al., 2011. Relationship between Metamorphism and Ore Formation at the Sukhoi Log Gold Deposit Hosted in Black Slates from the Data of U-Th-Pb Isotopic SHRIMP-Dating of Accessory Minerals. Geology of Ore Deposits, 53(1): 27–57. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mineralogy, South-Urals Federal Research Center of Mineralogy and GeoecologyUrals Branch, Russian Academy of SciencesMiassRussia
  2. 2.Geological DepartmentSouth-Urals State UniversityMiassRussia
  3. 3.Institute of Geology of the Komi Science Center, Urals BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations