Advertisement

High \(f_{H_{2-}}f_{S_2}\) Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite

  • Fariba PadyarEmail author
  • Mohammad Rahgoshay
  • Alexander Tarantola
  • Marie-Camille Caumon
  • Seyed Mohammad Pourmoafi
Article
  • 12 Downloads

Abstract

This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic-sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 ºC and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO2 of −56.6 ºC, and significant amounts of H2. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectros-copy. High amounts of H2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ34S values for sulfide minerals in galena of sphalerite bearing veins vary between −9.8‰ and −1.0‰, and the δ34S values calculated for H2S are between −7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.

Keywords

Iran Miduk porphyry Latala sphalerite fluid inclusions Raman spectroscopy δ34

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the Ministry of Science, Research and Technology of Iran and TRIGGER Program. We would like to thank Prof. Jean Dubessy who facilitates the visit to GeoRessources Laboratory. We would like to thank Prof. Olivier Vanderhaeghe and Dr. Saeed Alirezaei for their guidance in the PhD study and their collaboration. We would also like to thank Prof. Marie-Christine Boiron for fruitful discussions. We would like to thank Dr. Karine de Maury-Pistre for accompanying us. We would like to thank the Geological Survey & Mineral Exploration of Iran GSI-Department of Geology of the Shahid Beheshti University, Miduk Copper Mine of the French Embassy. Finally, we would like to thank the faculty, staff, and students of the Department of Geology- GeoResources of the University de Lorraine, for their collaboration. The final publication is available at Springer via  https://doi.org/10.1007/s01258-019-1023-6.

References Cited

  1. Acero, P., Cama, J., Ayora, C., 2007. Sphalerite Dissolution Kinetics in Acidic Environment. Applied Geochemistry, 22(9): 1872–1883. https://doi.org/10.1016/j.apgeochem.2007.03.051 CrossRefGoogle Scholar
  2. Agard, P., Omrani, J., Jolivet, L., et al., 2011. Zagros Orogeny: A Subduction-Dominated Process. Geological Magazine, 148(5/6): 692–725. https://doi.org/10.1017/s001675681100046x CrossRefGoogle Scholar
  3. Akaryali, E., 2016. Geochemical, Fluid Inclusion and Isotopic (O, H and S) Constraints on the Origin of Pb-Zn±Au Vein-Type Mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74: 1–14. https://doi.org/10.1016/j.oregeorev.2015.11.013 CrossRefGoogle Scholar
  4. Alirezaei, S., Modrek, H., Padyar, F., 2010. Chahmessi Epithermal Base and Precious Metal Deposit Kerman Copper Belt, South Iran: Investigation of Genetic Relation with Miduk Porphyry System. ACROFI-III, Novosibirsk, Russia. 6–7Google Scholar
  5. Atapour, H., 2007. Geochemical Evolution and Metallogeny of Potassic Igneous Rocks of Dehaj-Sarduieh Volcano-Plutonic Belt, Kerman Province, Iran, with Particular Reference to Special Elements: [Dissertation]. Shahid Bahonar University of Kerman, Kerman. 401 (in Persian with English Abstract)Google Scholar
  6. Azbej, T., Severs, M. J., Rusk, B. G., et al., 2007. In situ Quantitative Analysis of Individual H2O-CO2 Fluid Inclusions by Laser Raman Spectroscopy. Chemical Geology, 237(3/4): 255–263. https://doi.org/10.1016/j.chemgeo.2006.06.025 CrossRefGoogle Scholar
  7. Baumgartner, R., Fontbote, L., Vennemann, T., 2009. Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3): 493–537. https://doi.org/10.2113/gsecongeo.103.3.493 CrossRefGoogle Scholar
  8. Belissont, R., Boiron, M.-C., Luais, B., et al., 2014. LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France): Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126: 518–540. https://doi.org/10.1016/j.gca.2013.10.052 CrossRefGoogle Scholar
  9. Berkesi, M., Hidas, K., Guzmics, T., et al., 2009. Detection of Small Amounts of H2O in CO2-Rich Fluid Inclusions Using Raman Spectroscopy. Journal of Raman Spectroscopy, 40(11): 1461–1463. https://doi.org/10.1002/jrs.2440 CrossRefGoogle Scholar
  10. Bonev, I. K., Kouzmanov, K., 2002. Fluid Inclusions in Sphalerite as Negative Crystals: A Case Study. European Journal of Mineralogy, 14(3): 607–620. https://doi.org/10.1127/0935-1221/2002/0014-0607 CrossRefGoogle Scholar
  11. Bonnet, J., Mosser-Ruck, R., Caumon, M. C., et al., 2016. Trace Element Distribution (Cu, Ga, Ge, Cd, and Fe) in Sphalerite from the Tennessee MVT Deposits, USA, by Combined EMPA, LA-ICP-MS, Raman Spectroscopy, and Crystallography. The Canadian Mineralogist, 54(5): 1261–1284. https://doi.org/10.3749/canmin.1500104 CrossRefGoogle Scholar
  12. Bortnikov, N. S. Genkin, A. D. Dobrovol’skaya, M. G., et al., 1991. The Nature of Chalcopyrite Inclusionsin Sphalerite: Exsolution, Coprecipitation, or “Disease”?. Economic Geology, 86: 1070–1082CrossRefGoogle Scholar
  13. Bozkaya, G., Bozkaya, O., Banks, D., et al., 2017. Fluid Evolution of Mixed Base-Metal Gold Mineralization in the Tethys Belt: Koru Deposit, Turkey. 14th Binennial Meeting of Society for Geology Applied to Mineral Deposits. Aug. 20–23, 2017, Quebec City, CanadaGoogle Scholar
  14. Burke, E. A. J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1/2/3/4): 139–158. https://doi.org/10.1016/s0024-4937(00)00043-8 CrossRefGoogle Scholar
  15. Buzatu, A., Buzgar, N., Damian, G., et al., 2013. The Determination of the Fe Content in Natural Sphalerites by Means of Raman Spectroscopy. Vibrational Spectroscopy, 68: 220–224. https://doi.org/10.1016/j.vibspec.2013.08.007 CrossRefGoogle Scholar
  16. Catchpole, H., Kouzmanov, K., Fontboté, L., et al., 2011. Fluid Evolution in Zoned Cordilleran Polymetallic Veins—Insights from Microthermometry and LA-ICP-MS of Fluid Inclusions. Chemical Geology, 281(3/4): 293–304. https://doi.org/10.1016/j.chemgeo.2010.12.016 CrossRefGoogle Scholar
  17. Catchpole, H., Kouzmanov, K., Putlitz, B., et al., 2015. Zoned Base Metal Mineralization in a Porphyry System: Origin and Evolution of Mineralizing Fluids in the Morococha District, Peru. Economic Geology, 110(1): 39–71. https://doi.org/10.2113/econgeo.110.1.39 CrossRefGoogle Scholar
  18. Caumon, M.-C., Dubessy, J., Robert, P., et al., 2014. Fused-Silica Capillary Capsules (FSCCs) as Reference Synthetic Aqueous Fluid Inclusions to Determine Chlorinity by Raman Spectroscopy. European Journal of Mineralogy, 25(5): 755–763. https://doi.org/10.1127/0935-1221/2013/0025-2280 CrossRefGoogle Scholar
  19. Caumon, M.-C., Tarantola, A., Mosser-Ruck, R., 2015. Raman Spectra of Water in Fluid Inclusions: I. Effect of Host Mineral Birefringence on Salinity Measurement. Journal of Raman Spectroscopy, 46(10): 969–976. https://doi.org/10.1002/jrs.4708 CrossRefGoogle Scholar
  20. Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761–4791. https://doi.org/10.1016/j.gca.2009.05.045 CrossRefGoogle Scholar
  21. Cooke, D., Braxton, W. N., Rinne, M., 2015. Metal Transport and Ore Deposition in Porphyry Copper±Gold±Molybdenum Deposits-Contrasting Behaviour between Deep and Hallow Environments. SGA 50th Anniversary Meeting, Aug. 24–27, 2015, Nancy, France. 275–278Google Scholar
  22. Daliran, F., Bakker, R. J., 2011. Metastable Melting Behavior in Fluid Inclusions in Sphalerite from the Angouran Zn(Pb) Deposit (NW Iran). European Current Research on Fluid Inclusions (ECROFI-XXI). Montanuniversität LeobenGoogle Scholar
  23. Di Benedetto, F., Bernardini, G. P., Costagliola, P., et al., 2005, Compositional Zoning in Sphalerite Crystals. American Mineralogist, 90: 1384–1392CrossRefGoogle Scholar
  24. Dimitrijevic, M. D., Dimitrijevic, M. N., Diordjevic, M., 1971. Geological Map of Shahr-E-Babak (30’ Sheet No. 7050, Scale: 1: 100 000). Geological Survey of Iran, TehranGoogle Scholar
  25. Dimitrijevic, M., 1973. Geology of Kerman Region. Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia. Geological Survey of Iran, Report No. Yu/52. 334Google Scholar
  26. Dubessy, J., Pagel, M., Beny, J. M., et al., 1988. Radiolysis Evidenced by H2-O2 and H2-Bearing Fluid Inclusions in Three Uranium Deposits. Geochimica et Cosmochimica Acta, 52(5): 1155–1167. https://doi.org/10.1016/0016-7037(88)90269-4 CrossRefGoogle Scholar
  27. Dubessy, J., Poty, B., Ramboz, C., 1989. Advances in C-O-H-N-S Fluid Geochemistry Based on Micro-Raman Spectrometric Analysis of Fluid Inclusions. European Journal of Mineralogy, 1(4): 517–534. https://doi.org/10.1127/ejm/1/4/0517 CrossRefGoogle Scholar
  28. Field, C. W., Zhang, L., Dilles, J. H., et al., 2005. Sulfur and Oxygen Iso-topic Record in Sulfate and Sulfide Minerals of Early, Deep, Pre-Main Stage Porphyry Cu-Mo and Late Main Stage Base-Metal Mineral Deposits, Butte District, Montana. Chemical Geology, 215(1/2/3/4): 61–93. https://doi.org/10.1016/j.chemgeo.2004.06.049 CrossRefGoogle Scholar
  29. Frei, R., 1995. Evolution of Mineralizing Fluid in the Porphyry Copper System of the Skouries Deposit, Northeast Chalkidiki (Greece); Evidence from Combined Pb-Sr and Stable Isotope Data. Economic Geology, 90(4): 746–762. https://doi.org/10.2113/gsecongeo.90.4.746 CrossRefGoogle Scholar
  30. Frezzotti, M. L., Tecce, F., Casagli, A., 2012. Raman Spectroscopy for Fluid Inclusion Analysis. Journal of Geochemical Exploration, 112: 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009 CrossRefGoogle Scholar
  31. Hall, D. L., Bodnar, R. J., 1990. Methane in Fluid Inclusions from Granulites: A Product of Hydrogen Diffusion?. Geochimica et Cosmochimica Acta, 54(3): 641–651. https://doi.org/10.1016/0016-7037(90)90360-w CrossRefGoogle Scholar
  32. Hall, D. L., Sterner, S. M., 1995. Experimental Diffusion of Hydrogen into Synthetic Fluid Inclusions in Quartz. Journal of Metamorphic Geology, 13(3): 345–355. https://doi.org/10.1111/j.1525-1314.1995.tb00224.x CrossRefGoogle Scholar
  33. Hassanzadeh, J., 1993. Metallogenic and Tectonic-Magmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahr E Babak Area, Kerman Province): [Dissertation]. University of California, Los Angeles. 204Google Scholar
  34. Hedenquist., J. W., Claveria, R. J. R., Villafuerte, G. P., 2001. Types of Sulfide-Rich Epithermal Deposits, and Their Affiliation to Porphyry Systems: Lepanto-Victoria-Far Southeast Deposits, Philippines, as Examples. ProExplo Congreso, April 24–28, Lima, Perú. https://www.researchgate.net/publication/292437674 Google Scholar
  35. Heinrich, C. A., 2005. The Physical and Chemical Evolution of Low-Salinity Magmatic Fluids at the Porphyry to Epithermal Transition: A Thermodynamic Study. Mineralium Deposita, 39(8): 864–889. https://doi.org/10.1007/s00126-004-0461-9 CrossRefGoogle Scholar
  36. Hope, G. A., Woods, R., Munce, C. G., 2001. Raman Microprobe Mineral Identification. Minerals Engineering, 14(12): 1565–1577. https://doi.org/10.1016/s0892-6875(01)00175-3 CrossRefGoogle Scholar
  37. Hrstka, T., Dubessy, J., Zachariáš, J., 2011. Bicarbonate-Rich Fluid Inclusions and Hydrogen Diffusion in Quartz from the Libčice Orogenic Gold Deposit, Bohemian Massif. Chemical Geology, 281(3/4): 317–332. https://doi.org/10.1016/j.chemgeo.2010.12.018 CrossRefGoogle Scholar
  38. Huebner, J. S., 1962. Fluid Inclusion Studies on Sphalerite and Quartz from the Providence Lead and Zinc Deposits, Zacatecas, Mexico: [Dissertation]. Princeton University, PrincetonGoogle Scholar
  39. Huizenga, J. M., 2001. Thermodynamic Modelling of C-O-H Fluids. Lithos, 55(1/2/3/4): 101–114. https://doi.org/10.1016/s0024-4937(00)00040-2 CrossRefGoogle Scholar
  40. Huizenga, J. M., 2005. COH, an Excel Spreadsheet for Composition Calculations in the C-O-H Fluid System. Computers & Geosciences, 31(6): 797–800. https://doi.org/10.1016/j.cageo.2005.03.003 CrossRefGoogle Scholar
  41. Imer, A., Richards, J. P., Muehlenbachs, K., 2016. Hydrothermal Evolution of the Çöpler Porphyry-Epithermal Au Deposit, Erzincan Province, Central Eastern Turkey. Economic Geology, 111(7): 1619–1658. https://doi.org/10.2113/econgeo.111.7.1619 CrossRefGoogle Scholar
  42. Jafari Rad, A. R., Busch, W., 2011. Porphyry Copper Mineral Prospectivity Mapping Using Interval Valued Fuzzy Sets Topsis Method in Central Iran. Journal of Geographic Information System, 3(4): 312–317. https://doi.org/10.4236/jgis.2011.34028 CrossRefGoogle Scholar
  43. Jamali, H., Dilek, Y., Daliran, F., et al., 2010. Metallogeny and Tectonic Evolution of the Cenozoic Ahar-Arasbaran Volcanic Belt, Northern Iran. International Geology Review, 52(4/5/6): 608–630. https://doi.org/10.1080/00206810903416323 CrossRefGoogle Scholar
  44. Keith, M., Haase, K. M., Schwarz-Schampera, U., et al., 2014. Effects of Temperature, Sulfur, and Oxygen Fugacity on the Composition of Sphalerite from Submarine Hydrothermal Vents. Geology, 42(8): 699–702. https://doi.org/10.1130/g35655.1 CrossRefGoogle Scholar
  45. Kouzmanov, K., Pokrovski, G. S., 2012. Hydrothermal Controls on Metal Distribution in (Cu-Au-Mo) Porphyry Systems. In: Special Publication of the Society of Economic Geologists, 16: 573–618. https://archive-ouverte.unige.ch/unige:27832 Google Scholar
  46. Koziowski, A., Aorecka, E., 1993, Sphalerite Origin in the Olkusz Mining District a Fluid Inclusion Model. Geological Quarterly, 37(2): 291–306Google Scholar
  47. Lepetit, P., Bente, K., Doering, T., et al., 2003. Crystal Chemistry of Fe-Containing Sphalerites. Physics and Chemistry of Minerals, 30(4): 185–191. https://doi.org/10.1007/s00269-003-0306-6 CrossRefGoogle Scholar
  48. Li, L. F., Zhang, X., Luan, Z. D., et al., 2018. Raman Vibrational Spectral Characteristics and Quantitative Analysis of H2 up to 400 ºC and 40 MPa. Journal of Raman Spectroscopy, 49(10): 1722–1731. https://doi.org/10.1002/jrs.5420 CrossRefGoogle Scholar
  49. Li, Y. B., Liu, J. M., 2006. Calculation of Sulfur Isotope Fractionation in Sulfides. Geochimica et Cosmochimica Acta, 70(7): 1789–1795. https://doi.org/10.1016/j.gca.2005.12.015 CrossRefGoogle Scholar
  50. Mao, J. W., Zhang, J. D., Pirajno, F., et al., 2011. Porphyry Cu-Au-Mo Epithermal Ag-Pb-Zn-Distal Hydrothermal Au Deposits in the Dexing Area, Jiangxi Province, East China—A Linked Ore System. Ore Geology Reviews, 43(1): 203–216. https://doi.org/10.1016/j.oregeorev.2011.08.005 CrossRefGoogle Scholar
  51. Martz, P., Cathelineau, M., Mercadier, J., et al., 2017. C-O-H-N Fluids Circulations and Graphite Precipitation in Reactivated Hudsonian Shear Zones during Basement Uplift of the Wollaston-Mudjatik Transition Zone: Example of the Cigar Lake U Deposit. Lithos, 294/295: 222–245. https://doi.org/10.1016/j.lithos.2017.10.001 CrossRefGoogle Scholar
  52. Mavrogenes, J. A., Bodnar, R. J., 1994. Hydrogen Movement into and out of Fluid Inclusions in Quartz: Experimental Evidence and Geologic Implications. Geochimica et Cosmochimica Acta, 58(1): 141–148. https://doi.org/10.1016/0016-7037(94)90452-9 CrossRefGoogle Scholar
  53. McInnes, B. I. A., Evans, N. J., Fu, F. Q., et al., 2005. Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits. In: Porter, T. M., ed., Super Porphyry Copper and Gold Deposits: A Global Perspective. PGC Publishing, Adelaide, Ausstralia. 27–42Google Scholar
  54. Melcher, F., Oberthür, T., Rammlmair, D., 2006. Geochemical and Mineralogical Distribution of Germanium in the Khusib Springs Cu-Zn-Pb-Ag Sulfide Deposit, Otavi Mountain Land, Namibia. Ore Geology Reviews, 28(1): 32–56. https://doi.org/10.1016/j.oregeorev.2005.04.006 CrossRefGoogle Scholar
  55. Melfos, V., Vavelidis, M., Christofides, G., et al., 2002. Origin and Evolution of the Tertiary Maronia Porphyry Copper-Molybdenum Deposit, Thrace, Greece. Mineralium Deposita, 37(6/7): 648–668. https://doi.org/10.1007/s00126-002-0277-4 CrossRefGoogle Scholar
  56. Mernagh, T. P., Trudu, A. G., 1993. A Laser Raman Microprobe Study of some Geologically Important Sulphide Minerals. Chemical Geology, 103(1/2/3/4): 113–127. https://doi.org/10.1016/0009-2541(93)90295-t CrossRefGoogle Scholar
  57. Movaghar, Y., Abedian, N., Borna, B., et al., 2011. Final Report on Silver and Gold Prospecting in the Area Latla-City B. Geological Map of Shahrbabak. Geological Survey & Mineral Exploration of Iran, Tehran. 309Google Scholar
  58. Murciego, A. M., Ayuso, E. A., Sanchez, A., et al., 2010. The Occurrence of Cd and Tl in the Sphalerite from El Losar del Barco Mine (Ávila, Spain): A Potential Environmental Hazard, Resumen SEM.Google Scholar
  59. Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA: [Dissertation]. University of Maryland, MarylandGoogle Scholar
  60. Oen, I. S., Kager, P., Kieft, C., 1980. Oscillatory Zoning of a Discontinuous Solid-Solution Series: Sphalerite-Stannite. American Mineralogist, 65: 1220–1232Google Scholar
  61. Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551–578. https://doi.org/10.2113/gsecongeo.67.5.551 CrossRefGoogle Scholar
  62. Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulphur and Carbon. In: Barne, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. Willey Interscience, New York. 509–567Google Scholar
  63. Osadchii, E. G., Gorbaty, Y. E., 2010. Raman Spectra and Unit Cell Parameters of Sphalerite Solid Solutions (FexZn1−xS). Geochimica et Cosmochimica Acta, 74(2): 568–573. https://doi.org/10.1016/j.gca.2009.10.022 CrossRefGoogle Scholar
  64. Padyar, F., 2017. The Nature and Evolution of Magmas and Hydrothermal Fluids Associated With Miduk PCD and Latala Vein Type Deposits: [Dissertation]. University of Shahed Beheshti, Tehran. 220Google Scholar
  65. Padyar, F., Rahgoshay, M., Alirezaei, S., et al.,2017a. Evolution of the Mineralizing Fluids and Possible Genetic Links between Miduk Porphyry Copper and Latala Vein Type Deposits, Kerman Copper Belt, South Iran. Journal of the Geological Society of India, 90(5): 558–568. https://doi.org/10.1007/s12594-017-0752-2 CrossRefGoogle Scholar
  66. Padyar, F., Rahgoshay, M., Tarantola, A., et al.,2017b. Cathodoluminescence, Microthermometry and Laser Raman Spectroscopy Study of Hydrothermal Quartz in Latala Deposit, Central Iran. Scientific Quarterly Journal of Geosciences. Iran, 26: 39–56Google Scholar
  67. Padyar, F., Rahgoshay, M., Tarantola, S., et al.,2017c. Evidences of Boiling in Fluid Inclusions and Distribution Metals during Mineralization in Latala Epithermal Base and Precious Metal Deposit, Northern Miduk Copper Deposit, Iran. Iranian National Fluid Inclusion Conference. Nov. 16, 2017. University of Zanjan, ZanjanGoogle Scholar
  68. Pasteris, J. D., Kuehn, C. A., Bodnar, R. J., 1986. Applications of the Laser Raman Microprobe RAMANOR U-1000 to Hydrothermal Ore Deposits; Carlin as an Example. Economic Geology, 81(4): 915–930. https://doi.org/10.2113/gsecongeo.81.4.915 CrossRefGoogle Scholar
  69. Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Geological Survey of Western Australia. Geological Survey of Western Australia, Perth. 1250CrossRefGoogle Scholar
  70. Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1): 165–218. https://doi.org/10.2138/rmg.2013.76.6 CrossRefGoogle Scholar
  71. Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247–250. https://doi.org/10.1130/g25451a.1 CrossRefGoogle Scholar
  72. Richards, J. P., Kerrich, R., 1993. The Porgera Gold Mine, Papua New Guinea; Magmatic Hydrothermal to Epithermal Evolution of an Alkalic-Type Precious Metal Deposit. Economic Geology, 88(5): 1017–1052. https://doi.org/10.2113/gsecongeo.88.5.1017 CrossRefGoogle Scholar
  73. Richards, J. P., Razavi, A. M., Spell, T. L., et al., 2018. Magmatic Evolution and Porphyry-Epithermal Mineralization in the Taftan Volcanic Complex, Southeastern Iran. Ore Geology Reviews, 95: 258–279. https://doi.org/10.1016/j.oregeorev.2018.02.018 CrossRefGoogle Scholar
  74. Rickard, D., Willden, M. Y., Marinder, N. E., et al., 1979. Studies of the Genesis of the Laisvall Sandstone Lead-Zinc Deposit, Sweden. Economic Geology, 74(5): 1255–1285. https://doi.org/10.2113/gsecongeo.74.5.1255 CrossRefGoogle Scholar
  75. Roedder, E., 1977. Fluid Inclusion Studies of Ore Deposits in the Viburnum Trend, Southeast Missouri. Economic Geology, 72(3): 474–479. https://doi.org/10.2113/gsecongeo.72.3.474 CrossRefGoogle Scholar
  76. Rye, R. O., 1993. The Evolution of Magmatic Fluids in the Epithermal Environment; The Stable Isotope Perspective. Economic Geology, 88(3): 733–752. https://doi.org/10.2113/gsecongeo.88.3.733 CrossRefGoogle Scholar
  77. Rye, R. O., 2005. A Review of the Stable-Isotope Geochemistry of Sulfate Minerals in Selected Igneous Environments and Related Hydrothermal Systems. Chemical Geology, 215(1/2/3/4): 5–36. https://doi.org/10.1016/j.chemgeo.2004.06.034 CrossRefGoogle Scholar
  78. Sakai, H., 1968. Isotopic Properties of Sulfur Compounds in Hydrothermal Processes. Geochemical Journal, 2(1): 29–49. https://doi.org/10.2343/geochemj.2.29 CrossRefGoogle Scholar
  79. Sawkins, F. J., 1964. Lead-Zinc Ore Deposition in the Light of Fluid Inclusion Studies, Providence Mine, Zacatecas, Mexico. Economic Geology, 59(5): 883–919. https://doi.org/10.2113/gsecongeo.59.5.883 CrossRefGoogle Scholar
  80. Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. https://doi.org/10.2138/rmg.2006.61.12 CrossRefGoogle Scholar
  81. Seward, T. M., Barnes, H. L., 1997. Metal Transport by Hydrothermal Fluids. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons Inc., New York. 235–285Google Scholar
  82. Shahabpour, J., 2007. Island-Arc Affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences, 30(5/6): 652–665. https://doi.org/10.1016/j.jseaes.2007.02.004 CrossRefGoogle Scholar
  83. Shang, L. B., Chou, I.-M., Lu, W. J., et al., 2009. Determination of Diffusion Coefficients of Hydrogen in Fused Silica between 296 and 523 K by Raman Spectroscopy and Application of Fused Silica Capillaries in Studying Redox Reactions. Geochimica et Cosmochimica Acta, 73(18): 5435–5443. https://doi.org/10.1016/j.gca.2009.06.001 CrossRefGoogle Scholar
  84. Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, London. 238Google Scholar
  85. Shikazono, N., 1973. Sphalerite-Carbonate-Pyrite Assemblage in Hydrothermal Veins and Its Bearing on Limiting the Environment of Their Deposition. Geochemical Journal, 7(2): 97–114. https://doi.org/10.2343/geochemj.7.97 CrossRefGoogle Scholar
  86. Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105: 3–41. https://doi.org/10.2113/gsecongeo.105.1.3 CrossRefGoogle Scholar
  87. Sirbescu, M. L. C., Nabelek, P. I., 2003. Dawsonite: An Inclusion Mineral in Quartz from the Tin Mountain Pegmatite, Black Hills, South Dakota. American Mineralogist, 88(7): 1055–1059. https://doi.org/10.2138/am-2003-0714 CrossRefGoogle Scholar
  88. Tarantola, A., Caumon, M. C., 2015. Raman Spectra of Water in Fluid Inclusions: II. Effect of Negative Pressure on Salinity Measurement. Journal of Raman Spectroscopy, 46(10): 977–982. https://doi.org/10.1002/jrs.4668 CrossRefGoogle Scholar
  89. Tauson, V. L., Chernyshev, L. V., 1977. Phase Relationships and Structural Features of ZnS-CdS Mixed Crystals. Geochemistry International, 14: 11–22Google Scholar
  90. Voudouris, P., Mavrogonatos, C., Rieck, B., et al., 2018. The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece. Minerals, 8(11): 531. https://doi.org/10.3390/min8110531 CrossRefGoogle Scholar
  91. Voudouris, P., Mavrogonatos, C., Spry, P. G., et al., 2019. Porphyry and Epithermal Deposits in Greece: An Overview, New Discoveries, and Mineralogical Constraints on Their Genesis. Ore Geology Reviews, 107: 654–691. https://doi.org/10.1016/j.oregeorev.2019.03.019 CrossRefGoogle Scholar
  92. Wang, G. G., Ni, P., Wang, R. C., et al., 2013. Geological, Fluid Inclusion and Isotopic Studies of the Yinshan Cu-Au-Pb-Zn-Ag Deposit, South China: Implications for Ore Genesis and Exploration. Journal of Asian Earth Sciences, 74: 343–360. https://doi.org/10.1016/j.jseaes.2012.11.038 CrossRefGoogle Scholar
  93. Williams-Jones, A. E., Heinrich, C. A., 2005. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7): 1287–1312. https://doi.org/10.2113/100.7.1287 CrossRefGoogle Scholar
  94. Wopenka, B., Pasteris, J. D., 1986. Limitations to Quantitative Analysis of Fluid Inclusions in Geological Samples by Laser Raman Microprobe Spectroscopy. Applied Spectroscopy, 40(2): 144–151. https://doi.org/10.1366/0003702864509592 CrossRefGoogle Scholar
  95. Yigit, O., 2009. Mineral Deposits of Turkey in Relation to Tethyan Metallogeny: Implications for Future Mineral Exploration. Economic Geology, 104(1): 19–51. https://doi.org/10.2113/gsecongeo.104.1.19 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Earth SciencesShahid Beheshti University-EvinTehranIran
  2. 2.Department of ExplorationGeological Survey of IranTehranIran
  3. 3.GeoResources Lab, Faculty of Sciences and TechnologiesUniversity of Lorraine, CNRSVandoeuvre the NancyFrance

Personalised recommendations