Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 977–995 | Cite as

Early-Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt

  • Min Liu
  • Shaocong LaiEmail author
  • Da Zhang
  • Renzhi Zhu
  • Jiangfeng Qin
  • Yongjun Di
Structural Geology and Thermochronology
  • 19 Downloads

Abstract

The end-Permian to Early-Middle Triassic magmatic rocks in Inner Mongolia can provide valuable insights into the relationships between the collisional processes and the magmatic responses during the final orogenic evolution of Xing-Meng orogenic belt (XMOB). This paper presents zircon U-Pb ages and Hf isotopes, whole rock geochemical and Sr-Nd-Pb isotopic data for the Early-Middle Triassic diabases and monzogranites from the Langshan area, southwestern XMOB. Our results suggest that the studied diabases and monzogranites were respectively formed during Early Triassic and Middle Triassic. The Early Triassic diabases are characterized by “arc-like” geochemical signatures, including enrichment in Rb, U and K, and depletion in Nb, Ta, P and Ti. They have negative to weak positive εNd (t) values (−3.1 to +1.5) and relatively high initial ratios of 208Pb/204Pb (35.968–37.346), 207Pb/204Pb (15.448–15.508) and 206Pb/204Pb (16.280–17.492), indicating a subduction-metasomatized enriched lithospheric mantle source. Their low Ba/Rb (2.72–6.56), Ce/Y (0.97–1.39) and (Tb/Yb)N ratios (1.31–1.45) suggest that the parental magma was likely originated from low degree partial melting of the phlogopite-bearing lherzolite in a spinel-stability field. The Middle Triassic monzogranites show high Sr/Y ratios, low MgO, Cr and Ni contents, high Zr/Sm ratios (40–64), negative zircon εHf(t) values (−25.8 to −8.8), as well as relatively flat heavy rare earth element patterns. They were likely derived from low degree partial melting of a moderately thickened ancient lower crust. The diabases and the slightly postdated high Sr/Y granites in this study represent the magmatic responses to the final orogenic evolution in the southwestern XMOB. Together with regional works, we propose that the slab break-off of the Paleo-Asian oceanic lithosphere following the terminal collision between the North China Craton and the South Mongolia terranes triggered asthenospheric upwelling, and the ongoing convergence further initiated moderately crustal thickening and uplift in the XMOB.

Key words

diabase granite high Sr/Y Early-Middle Triassic Xing-Meng orogenic belt slab break-off 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was jointly supported by the Geological Survey of China (No. 1212011085490) and the National Natural Science Foundation of China (No. 41421002). We sincerely thank the editors and the anonymous reviewers for their critical and constructive comments. We are grateful to Guangqiang Xiong, Hongtao Zhao, Quanliu Chen, and Zhong Wang for their help with the field work. We thank Yu Zhu, Fangyi Zhang and Zezhong Zhang for their laboratory assistance. We also appreciate Yuan Yuan and Yaoyao Zhang for their insightful suggestions. The final publication is available at Springer via https://doi.org/10.1007/sl2583-019-1015-5.

References Cited

  1. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79.  https://doi.org/10.1016/s0009-2541(02)00195-x Google Scholar
  2. Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146.  https://doi.org/10.1038/362144a0 Google Scholar
  3. Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255–262.  https://doi.org/10.1016/j.ijms.2017.07.015 Google Scholar
  4. Boynton, W. V., 1984. Cosmo chemistry of the Rare Earth Elements: Meteorite Studiess. In: Henderson, P. E., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114Google Scholar
  5. Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135(3): 304–316.  https://doi.org/10.1016/j.lithos.2011.09.013 Google Scholar
  6. Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33–51.  https://doi.org/10.1007/s004100050467 Google Scholar
  7. Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1–36.  https://doi.org/10.1144/sp318.1 Google Scholar
  8. Chen, B., Ma, X. H., Liu, A. K., et al., 2009. Zircon U-Pb Ages of the Xil-inhot Metamorphic Complex and Blueschist and Implications for Tectonic Evolution of the Solonker Suture. Acta Petrologica Sinica, 25(12): 3123–3129 (in Chinese with English Abstract)Google Scholar
  9. Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021–1024.  https://doi.org/10.1130/gl9796.1 Google Scholar
  10. Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228–242.  https://doi.org/10.1016/j.gr.2008.06.001 Google Scholar
  11. Darby, B. J., Ritts, B. D., 2007. Mesozoic Structural Architecture of the Lang Shan, North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation. Journal of Structural Geology, 29(12): 2006–2016.  https://doi.org/10.1016/jjsg.2007.06.011 Google Scholar
  12. Davis, G. A., Xu, B., Zheng, Y. D., et al., 2004. Indosinian Extension in the Solonker Suture Zone: The Sonid Zuoqi Metamorphic Core Complex, Inner Mongolia, China. Earth Science Frontiers, 11(3): 135–143.  https://doi.org/10.1007/bfD2873097 Google Scholar
  13. de Jong, K., Xiao, W., Windley, B. F., et al., 2006. Ordovician 40Ar/39Ar Phengite Ages from the Blueschist-Facies Ondor Sum Subduction-Accretion Complex (Inner Mongolia) and Implications for the Early Paleozoic History of Continental Blocks in China and Adjacent Areas. American Journal of Science, 306(10): 799–845.  https://doi.org/10.2475/10.2006.02 Google Scholar
  14. Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphère. Nature, 347(6294): 662–665.  https://doi.org/10.1038/347662a0 Google Scholar
  15. Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delami-nation of Subcontinental Lithosphère. Journal of Petrology, 46(6): 1155–1201.  https://doi.org/10.1093/petrology/egi013 Google Scholar
  16. Eizenhöfer, P. R., Zhao, G. C., Zhang, J., et al., 2014. Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 33(4): 441–463.  https://doi.org/10.1002/2013tc003357 Google Scholar
  17. Eizenhöfer, P. R., Zhao, G. C., Zhang, J., et al., 2015. Geochemical Characteristics of the Permian Basins and Their Provenances Across the Solonker Suture Zone: Assessment of Net Crustal Growth during the Closure of the Palaeo-Asian Ocean. Lithos, 224/225: 240–255.  https://doi.org/10.1016/j.lithos.2015.03.012 Google Scholar
  18. Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77.  https://doi.org/10.1130/gl9887.1 Google Scholar
  19. Foley, S. F., Jackson, S. E., Fryer, B. J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lam-prophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cos-mochimica Acta, 60(4): 629–638.  https://doi.org/10.1016/0016-7037(95)00422-x Google Scholar
  20. Furman, T., Graham, D., 1999. Erosion of Limospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1/2/3/4): 237–262.  https://doi.org/10.1016/s0024-4937(99)00031-6 Google Scholar
  21. Gao, S., Liu, X. M., Yuan, H. L., et al., 2002. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostan-dards and Geoanalytical Research, 26(2): 181–196.  https://doi.org/10.1111/j.1751-908x.2002.tb00886.x Google Scholar
  22. Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753–757.  https://doi.org/10.1038/309753a0 Google Scholar
  23. Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62.  https://doi.org/10.2113/0530027 Google Scholar
  24. Hu, J. M., Gong, W. B., Wu, S. J., et al., 2014. LA-ICP-MS Zircon U-Pb Dating of the Langshan Group in the Normeast Margin of the Alxa Block, with Tectonic Implications. Precambrian Research, 255: 756–770.  https://doi.org/10.1016/j.precamres.2014.08.013 Google Scholar
  25. Ionov, D. A., Griffin, W. L., O’Reilly, S. Y., 1997. Volatile-Bearing Minerals and Limophile Trace Elements in the Upper Mantle. Chemical Geology, 141(3/4): 153–184.  https://doi.org/10.1016/s0009-2541(97)00061-2 Google Scholar
  26. Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548.  https://doi.org/10.1139/e71-055 Google Scholar
  27. Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193.  https://doi.org/10.1017/s0263593300007367 Google Scholar
  28. Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259.  https://doi.org/10.1016/j.lithos.2007.07.005 Google Scholar
  29. Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intrao-ceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1/2): 169–190.  https://doi.org/10.1016/j.lithos.2010.04.014 Google Scholar
  30. Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2010. Pedogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3/4): 127–151.  https://doi.org/10.1007/s00710-010-0124-8 Google Scholar
  31. Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177–189.  https://doi.org/10.1016/0040-1951(93)90295-u Google Scholar
  32. Li, H. K., Geng, J. Z., Hao, S., et al., 2009. The Study of Zircon U-Pb Dating by Means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28 Suppl.): 77 in Chinese)Google Scholar
  33. Li, S., Chung, S. L., Wilde, S. A., et al., 2016a. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6(1): 25751.  https://doi.org/10.1038/srep25751 Google Scholar
  34. Li, S., Wilde, S. A., Wang, T., et al., 2016b. Latest Early Permian Granitic Magmatism in Southern Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Gond-wanaResearch, 29(1): 168–180.  https://doi.org/10.1016/j.gr.2014.11.006 Google Scholar
  35. Li, S., Chung, S. L., Wilde, S. A., et al., 2017. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 163(6): 2291–2309.  https://doi.org/10.1002/2017jb014006 Google Scholar
  36. Li, S., Wilde, S. A., He, Z. H., et al., 2014. Triassic Sedimentation and Postaccretionary Crustal Evolution along the Solonker Suture Zone in Inner Mongolia, China. Tectonics, 33(6): 960–981.  https://doi.org/10.1002/2013tc003444 Google Scholar
  37. Lin, L. N., Xiao, W. J., Wan, B., et al., 2014. Geo chrono logic and Geo-chemical Evidence for Persistence of South-Dipping Subduction to Late Permian Time, Langshan Area, Inner Mongolia China): Significance for Termination of Accretionary Orogenesis in the Southern Al-taids. American Journal of Science, 314(2): 679–703.  https://doi.org/10.2475/02.2014.08 Google Scholar
  38. Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285–296.  https://doi.org/10.1016/j.lithos.2013.07.008 Google Scholar
  39. Liu, M., Zhang, D., Xiong, G. Q., et al., 2016. Zircon U-Pb Age, Hf Isotope and Geochemistry of Carboniferous Intrusions from the Langshan Area, Inner Mongolia: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 120: 139–158.  https://doi.org/10.1016/jjseaes.2016.01.005 Google Scholar
  40. Liu, Y. S., Wang, X. H., Wang, D. B., et al., 2012. Triassic High-Mg Ada-kitic Andésites from Linxi, Inner Mongolia: Insights into the Fate of the Paleo-Asian Ocean Crust and Fossil Slab-Derived Melt-Peridotite Interaction. Chemical Geology, 328: 89–108.  https://doi.org/10.1016/j.chemgeo.2012.03.019 Google Scholar
  41. Liu, Y., 2012. Geochemical and Chronological Characteristics of the Granitic Gneisses and Intrusive Rocks from Dongshengmiao Region, Inner Mongolia and Their Tectonic Implications: [Dissertation]. Lanzhou University, Lanzhou. 1–4 (in Chinese)Google Scholar
  42. Ludwig, K. R., 2003. ISOPLOT 3.0: A Geo chrono logical Toolkit for Microsoft Excel. Geochronology Center: Special Publication, Berkeley. 4Google Scholar
  43. Luo, Z. W., Xu, B., Shi, G. Z, et al., 2016. Solonker Ophiolite in Inner Mongolia, China: A Late Permian Continental Margin-Type Ophiolite. Lithos, 261: 72–91.  https://doi.org/10.1016/j.lithos.2016.03.001 Google Scholar
  44. Ma, L., Jiang, S. Y., Hofinann, A. W., et al., 2014. Lithospheric and As-thenospheric Sources of Lamprophyres in the Jiaodong Peninsula: A Consequence of Rapid Lithospheric Thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124: 250–271.  https://doi.org/10.1016/j.gca.2013.09.035 Google Scholar
  45. Ma, S. W., Liu, C. F., Xu, Z. Q, et al., 2017. Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 28(2): 249–264.  https://doi.org/10.1007/sl2583-016-0912-2 Google Scholar
  46. Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalité-Trondhjemite-Granodiorite TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24.  https://doi.org/10.1016/j.lithos.2004.04.048 Google Scholar
  47. McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphère. Journal of Petrology, 29(3): 625–679.  https://doi.org/10.1093/petrology/29.3.625 Google Scholar
  48. Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5/6): 348–370.  https://doi.org/10.1016/j.jseaes.2007.11.005 Google Scholar
  49. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 Google Scholar
  50. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.  https://doi.org/10.1007/bfD0384745 Google Scholar
  51. Peng, R. M., Zhai, Y. S., Li, C. S., et al., 2013. The Erbutu Ni-Cu Deposit in the Central Asian Orogenic Belt: A Permian Magmatic Sulfide Deposit Related to Boninitic Magmatism in an Arc Setting. Economic Geology, 108(8): 1879–1888.  https://doi.org/10.2113/econgeo.108.8.1879 Google Scholar
  52. Peng, R. M., Zhai, Y. S., Wang, J. P., et al., 2010. Discovery of Neopro-terozoic Acid Volcanic Rock in the South-Western Section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611–2620. in Chinese with English Abstract)Google Scholar
  53. Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Under-plated Basaltic Crust: The Cordillera Bianca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521.  https://doi.org/10.1093/petrology/37.6.1491 Google Scholar
  54. Pi, Q. H., Liu, C. Z., Chen, Y. L., et al., 2010. Formation Epoch and Genesis of Intrusive Rocks in Huogeqi Ore Field of Inner Mongolia and Their Relationship with Copper Mineralization. Mineral Deposits, 29(3): 437 51 in Chinese with English Abstract)Google Scholar
  55. Prouteau, G., Scaillet, B., 2003. Experimental Constraints on the Origin of the 1991 Pinatubo Dacite. Journal of Petrology, 44(12): 2203–2241.  https://doi.org/10.1093/petrology/egg075 Google Scholar
  56. Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10–15 kbar: Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6): 1195–1224.  https://doi.org/10.1007/s00410-013-0854-9 Google Scholar
  57. Rapp, R. P., Shimizu, N., Norman, M. D, 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605–609.  https://doi.org/10.1038/nature02031 Google Scholar
  58. Rickwood, P. C., 1989. Boundary Lines wimin Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263.  https://doi.org/10.1016/0024-4937(89)90028-5 Google Scholar
  59. Robinson, P. T., Zhou, M. F., Hu, X. F., et al., 1999. Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 17(4): 423 -42.  https://doi.org/10.1016/sl367-9120(99)00016-4
  60. Schulmann, K., Paterson, S., 2011. Asian Continental Growth. Nature Geo-science, 4(12): 827–829.  https://doi.org/10.1038/ngeol339 Google Scholar
  61. Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing’an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221–2248.  https://doi.org/10.1002/2015tc003948 Google Scholar
  62. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 Google Scholar
  63. Thirlwall, M. F., Smith, T. E., Graham, A. M., et al., 1994. High Field Strength Element Anomalies in Arc Lavas: Source or Process?. Journal of Petrology, 35(3): 819–838.  https://doi.org/10.1093/petrology/353.819 Google Scholar
  64. van de Zedde, D. M. A., Wortel, M. J. R., 2001. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 20(6): 868–882.  https://doi.org/10.1029/2001tc900018 Google Scholar
  65. Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119–144.  https://doi.org/10.1093/petrology/egi070 Google Scholar
  66. Wang, Z. J., Xu, W. L., Pei, F. P., et al., 2015a. Geochronology and Geochemistry of Middle Permian-Middle Triassic Intrusive Rocks from Central-Eastern Jilin Province, NE China: Constraints on the Tectonic Evolution of the Eastern Segment of the Paleo-Asian Ocean. Lithos, 238: 13–25.  https://doi.org/10.1016/j.lithos.2015.09.019 Google Scholar
  67. Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2015b. Geochronology, Geochemistry and Origins of the Paleozoic-Trias sic Plutons in the Lang-shan Area, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 337–351.  https://doi.org/10.1016/jjseaes.2014.08.005 Google Scholar
  68. Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2016. Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western Norm China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 261: 278–295.  https://doi.org/10.1016/j.lithos.2016.03.005 Google Scholar
  69. Wilde, S. A, 2015. Final Amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean Closure versus Paleo-Pacifïc Plate Subduction—A Review of the Evidence. Tectonophysics, 662: 345–362.  https://doi.org/10.1016/j.tecto.2015.05.006 Google Scholar
  70. Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47.  https://doi.org/10.1144/0016-76492006-022 Google Scholar
  71. Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1–8.  https://doi.org/10.1029/2002tc001484 Google Scholar
  72. Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477–507.  https://doi.org/10.1146/annurev-earth-060614-105254 Google Scholar
  73. Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342–1364.  https://doi.org/10.1016/j.gr.2012.05.015 Google Scholar
  74. Yu, Y., Sun, M., Huang, X. L., et al., 2017. Sr-Nd-Hf-Pb Isotopic Evidence for Modification of the Devonian Limospheric Mantle beneath the Chinese Altai. Lithos, 284/285: 207–221.  https://doi.org/10.1016/j.lithos.2017.04.004 Google Scholar
  75. Yuan, H. L., Gao, S., Dai, M. N, et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100–118.  https://doi.org/10.1016/j.chemgeo.2007.10.003 Google Scholar
  76. Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353–370.  https://doi.org/10.1111/j.1751-908x.2004.tb00755.x Google Scholar
  77. Yuan, W., Yang, Z. Y., 2015. The Alashan Terrane was not Part of North China by the Late Devonian: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 27(3): 1270–1282.  https://doi.org/10.1016/j.gr.2013.12.009 Google Scholar
  78. Zeng, Q. D., Yang, J. H., Zhang, Z. L., et al., 2013. Petrogenesis of the Yangchang Mo-Bearing Granite in the Xilamulun Metallogenic Belt, NE China: Geochemistry, Zircon U-Pb Ages and Sr-Nd-Pb Isotopes. Geological Journal, 49(1): 1–14.  https://doi.org/10.1002/gj.2481 Google Scholar
  79. Zhang, J. R., Wei, C. J., Chu, H., et al., 2016a. Mesozoic Metamorphism and Its Tectonic Implication along the Solonker Suture Zone in Central Inner Mongolia, China. Lithos, 261: 262–277.  https://doi.org/10.1016/j.lithos.2016.03.014 Google Scholar
  80. Zhang, J., Zhang, B. H., Zhao, H., 2016b. Timing of Amalgamation of the Alxa Block and the North China Block: Constraints Based on Detrital Zircon U-Pb Ages and Sedimentologic and Structural Evidence. Tec-tonophysics, 668/669: 65–81.  https://doi.org/10.1016/j.tecto.2015.12.006 Google Scholar
  81. Zhang, J., Li, J. Y., Xiao, W. J., et al., 2013. Kinematics and Geochronology of Multistage Ductile Deformation along the Eastern Alxa Block, NW China: New Constraints on the Relationship between the North China Plate and the Alxa Block. Journal of Structural Geology, 57: 38–57.  https://doi.org/10.1016/jjsg.2013.10.002 Google Scholar
  82. Zhang, S. H., Zhao, Y., Davis, G. A., et al., 2014a. Temporal and Spatial Variations of Mesozoic Magmatism and Deformation in the North China Craton: Implications for Lithospheric Thinning and Decratoni-zation. Earth-Science Reviews, 131: 49–87.  https://doi.org/10.1016/j.earscirev.2013.12.004 Google Scholar
  83. Zhang, S. H., Gao, R., Li, H. Y., et al., 2014b. Crustal Structures Revealed from a Deep Seismic Reflection Profile Across the Solonker Suture Zone of the Central Asian Orogenic Belt, Northern China: An Integrated Interpretation. Tectonophys ics, 612/613: 26–39.  https://doi.org/10.1016/j.tecto.2013.11.035 Google Scholar
  84. Zhang, S. H., Zhao, Y., Ye, H., et al., 2014c. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9/10): 1275–1300.  https://doi.org/10.1130/b31042.1 Google Scholar
  85. Zhang, S. H., Zhao, Y., Song, B., et al., 2009a. Contrasting Late Carboniferous and Late Permian-Middle Triassic Intrusive Suites from the Northern Margin of the North China Craton: Geochronology, Petrogenesis, and Tectonic Implications. Geological Society of America Bulletin, 121: 181–200.  https://doi.org/10.1130/b26157.1 Google Scholar
  86. Zhang, S. H., Zhao, Y., Liu, X. C., et al., 2009b. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1/2/3/4): 229–246.  https://doi.org/10.1016/j.lithos.2009.01.008 Google Scholar
  87. Zhang, S. H., Zhao, Y., Ye, H., et al., 2012. Early Mesozoic Alkaline Complexes in the Northern North China Craton: Implications for Cratonic Lithospheric Destruction. Lithos, 155: 1–18.  https://doi.org/10.1016/j.lithos.2012.08.009 Google Scholar
  88. Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433–446.  https://doi.org/10.1007/sl2583-016-0934-1 Google Scholar
  89. Zhang, X. H., Mao, Q., Zhang, H. F., et al., 2011. Mafic and Felsic Magma Interaction during the Construction of High-K Calc-Alkaline Plutons within a Metacratonic Passive Margin: The Early Permian Guyang Batholith from the Northern North China Craton. Lithos, 125(1/2): 569–591.  https://doi.org/10.1016/j.lithos.2011.03.008 Google Scholar
  90. Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388: 98–111.  https://doi.org/10.1016/j.chemgeo.2014.09.004 Google Scholar
  91. Zhao, X. C., Zhou, W. X., Fu, D., et al., 2018. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 29(2): 280–294.  https://doi.org/10.1007/sl2583-017-0942-2 Google Scholar
  92. Zhou, J. B., Wilde, S. A, 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Oogenic Belt. Gondwana Research, 23(4): 1365–1377.  https://doi.org/10.1016/j.gr.2012.05.012 Google Scholar
  93. Zindler, A., Hart, S. R., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493–571.  https://doi.org/10.1146/annurev.ea.14.050186.002425 Google Scholar
  94. Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47.  https://doi.org/10.1016/s0009-2541(00)00243-6 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest UniversityXi’anChina
  2. 2.School of Earth Sciences and ResourcesChina University of GeosciencesBeijingChina

Personalised recommendations