Journal of Earth Science

, Volume 30, Issue 5, pp 924–937 | Cite as

Coronas around Olivine in the Miaowan Olivine Norite, Yangtze Craton, South China

  • Shuhua Fan
  • Zhaochong ZhangEmail author
  • Changqian Ma
  • Qiuhong Xie
  • Lianxun Wang
  • Yanjie Li
  • Yuzhe Zhang
Petrology, Mineralogy and Geochemistry


Coronitic microstructures have been used to interpret the late-stage solidification history of igneous rocks and to constrain the corresponding chemical and/or physical changes. Coronas with three shells were also recognized in the Miaowan olivine norite, Yangtze Craton, South China. In our study, orthopyroxene intergrowth with vermicular magnetite in the inner shell is in optical continuity with magnetite-free orthopyroxene in the middle shell. In the outer shell of brown amphibole remaining magnetite-free orthopyroxene inclusions sporadically occur. Meanwhile Mg# values of orthopyroxene (76–80) in the inner and middle shells are basically consistent with olivine (78–81). In this paper, we propose a multi-stage genetic model for the formation of coronas in the Miaowan olivine norite. In the first stage, the magnetite-free orthopyroxene shell formed through reaction between primocrystal olivine with the residual Si-rich melt at 990–1 053 °C and 6.2–6.5 kbar. In the second stage, the orthopyroxene-magnetite symplectite shell formed when primocrystal olivine reacted with the late-stage residual Fe-rich melt promoted by high oxygen fugacity condition at 927–1 035 °C and 6.0–6.5 kbar. In the third stage, the brown amphibole shell formed as the presence of residual hydrous melt and replaced the middle shell at 821–900 °C and 5.5–6.0 kbar.

Key words

Yangtze Craton Miaowan olivine norite coronas orthopyroxene-magnetite symplectite magmatic origin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Jianpei Lu for his help for observing thin sections. Shu Zheng, Yang Sun and Shiming Wang are appreciated for their assistance in the microprobe lab, Zhenbing She, Bin Liu, Fuhao Xiong, Zhiguo Cheng for their helpful advices on the interpretation of the coronas. We thank two anonymous reviewers for their constructive and valuable reviews that improved the manuscript. This work is financially supported by the National Key Research and Development Program of China (No. 2016YFC0600502), the National Natural Science Foundation of China (No. 41502046) and the Geological Survey Project of China (No. DD20160030). The final publication is available at Springer via

References Cited

  1. Abily, B., Ceuleneer, G., Launeau, P., 2011. Synmagmatic Normal Faulting in the Lower Oceanic Crust: Evidence from the Oman Ophiolite. Geology, 39(4): 391–394. Google Scholar
  2. Acquafredda, P., Caggianelli, A., Piccarreta, G., 1992. Late Magmatic to Subsolidus Coronas in Gabbroic Rocks from the Sila Massif (Calabria, Italy). Mineralogy and Petrology, 46(3): 229–238. Google Scholar
  3. Ambler, E. P., Ashley, P. M., 1977. Vermicular Orthopyroxene-Magnetite Symplectites from the Wateranga Layered Mafic Intrusion, Queensland, Australia. Lithos, 10(3): 163–172. Google Scholar
  4. Baltatzis, E., Skounakis, S., 1990. Coronas in Olivine-Gabbros from La-vanovo Village, Northern Pindos, Greece. Chemie der Erde-Geochemistry, 50: 297–302Google Scholar
  5. Barton, M., Gaans, C. V., 1988. Formation of Orthopyroxene-Fe-Ti Oxide Symplectites in Precambrian Intrusives, Rogaland, Southwestern Norway. American Mineralogist, 73(9/10): 1046–1059Google Scholar
  6. Bucher, K., Grapes, R., 2009. The Eclogite-Facies Allalin Gabbro of the Zermatt-Saas Ophiolite, Western Alps: A Record of Subduction Zone Hydration. Journal of Petrology, 50(8): 1405–1442. Google Scholar
  7. Chen, C., Yuan, J. L., Kong, L. Y., et al., 2018. Documentation of Early Paleozoic Mafic Dykes in the Dahongshan Region, Northern Yangze Block and Its Geological Significance. Earth Science, 43(7): 2370–2388 (in Chinese with English Abstract)Google Scholar
  8. Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219–1235. Google Scholar
  9. Cheng, C., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yar-lung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 975–990 (in Chinese with English Abstract)Google Scholar
  10. Claeson, D. T., 1998. Coronas, Reaction Rims, Symplectites and Emplacement Depth of the Rymmen Gabbro, Transscandinavian Igneous Belt, Southern Sweden. Mineralogical Magazine, 62(6): 743–757. Google Scholar
  11. Coombs, M. L., Gardner, J. E., 2004. Reaction Rim Growth on Olivine in Silicic Melts: Implications for Magma Mixing. American Mineralogist, 89(5/6): 748–758. Google Scholar
  12. Cruciani, G., Franceschelli, M., Groppo, C., et al., 2008. Formation of Clinopyroxene+Spinel and Amphibole+Spinel Symplectites in Cor-onitic Gabbros from the Sierra de San Luis (Argentina): A Key to Post-Magmatic Evolution. Journal of Metamorphic Geology, 26(7): 759–774. Google Scholar
  13. de Haas, G. J. L., Nijland, T. G., Valbracht, P. J., et al., 2002. Magmatic Versus Metamorphic Origin of Olivine-Plagioclase Coronas. Contributions to Mineralogy and Petrology, 143(5): 537–550. Google Scholar
  14. Deng, H., Peng, S. B., Polat, A., et al., 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings. Precambrian Research, 289: 75–94. Google Scholar
  15. Dirksen, O., Humphreys, M. C. S., Pletchov, P., et al., 2006. The 2001–2004 Dome-Forming Eruption of Shiveluch Volcano, Kamchatka: Observation, Petrological Investigation and Numerical Modelling. Journal of Volcanology and Geothermal Research, 155(3/4): 201–226. Google Scholar
  16. Efimov, A. A., Malitch, K. N., 2012. Magnetite-Orthopyroxene Symplec-tites in Gabbros of the Urals: A Structural Track of Olivine Oxidation. Geology of Ore Deposits, 54(7): 531–539. Google Scholar
  17. England, R. N., 1974. Corona Structures Formed by Near-Isochemical Reaction between Olivine and Plagioclase in a Metamorphosed Dolerite. Mineralogical Magazine, 39(307): 816–818. Google Scholar
  18. Faryad, S. W., Kachlík, V., Sláma, J., et al., 2015. Implication of Corona Formation in a Metatroctolite to the Granulite Facies Overprint of HP-UHP Rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33(3): 295–310. Google Scholar
  19. Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153–182. Google Scholar
  20. Gardner, P. M., Robins, B., 1974. The Olivine-Plagioclase Reaction: Geological Evidence from the Seiland Petrographic Province, Northern Norway. Contributions to Mineralogy and Petrology, 44(2): 149–156. Google Scholar
  21. Goode, A. D. T., 1974. Oxidation of Natural Olivines. Nature, 248(5448): 500–501. Google Scholar
  22. Grant, S. M., 1988. Diffusion Models for Corona Formation in Metagabbros from the Western Grenville Province, Canada. Contributions to Mineralogy and Petrology, 98(1): 49–63. Google Scholar
  23. Hammarstrom, J. M., Zen, E., 1986. Aluminum in Hornblende: An Empirical Igneous Geobarometer. American Mineralogist, 71(11): 1297–1313. Google Scholar
  24. Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophioli-tic Mélange, Yangtze Craton, South China: Evidence for Paleopro-terozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13–38. Google Scholar
  25. Haselton, J. D., Nash, W. P., 1975. Ilmenite-Orthopyroxene Intergrowths from the Moon and the Skaergaard Intrusion. Earth and Planetary Science Letters, 26(3): 287–291. Google Scholar
  26. Helz, R. T., 1973. Phase Relations of Basalts in Their Melting Range at P =5 kb as a Function of Oxygen Fugacity. Part I. Mafic Phases. H2O Journal of Petrology, 14(2): 249–302. Google Scholar
  27. Holness, M. B., Stripp, G., Humphreys, M. C. S., et al., 2011. Silicate Liquid Immiscibility within the Crystal Mush: Late-Stage Magmatic Mi-crostructures in the Skaergaard Intrusion, East Greenland. Journal of Petrology, 52(1): 175–222. Google Scholar
  28. Ikeda, T., Nishiyama, T., Yamada, S., et al., 2007. Microstructures of Olivine-Plagioclase Corona in Meta-Ultramafic Rocks from Sefuri Mountains, NW Kyushu, Japan. Lithos, 97(3/4): 289–306. Google Scholar
  29. Jiang, X. F., 2014. Genesis and Tectonic Significance of the Miaowan Ophiolite Complex in the Huangling Anticline, Yangtze Craton: [Dissertation]. China University of Geosciences, Wuhan. 168 (in Chinese with English Abstract)Google Scholar
  30. Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geo-tectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93–102. Google Scholar
  31. Jiang, X. F., Peng, S. B., Polat, A., et al., 2016. Geochemistry and Geo-chronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China: Implications for Geodynamic Events. Precambrian Research, 279: 37–56. Google Scholar
  32. Joesten, R., 1986. The Role of Magmatic Reaction, Diffusion and Annealing in the Evolution of Coronitic Microstructure in Troctolitic Gabbro from Risör, Norway. Mineralogical Magazine, 50(357): 441–467. Google Scholar
  33. Keeditse, M., Rajesh, H. M., Belyanin, G. A., et al., 2016. Primary Mag-matic Amphibole in Archaean Meta-Pyroxenite from the Central Zone of the Limpopo Complex, South Africa. South African Journal of Geology, 119(4): 607–622. Google Scholar
  34. Kendrick, J. L., Jamieson, R. A., 2016. The Fate of Olivine in the Lower Crust: Pseudomorphs after Olivine in Coronitic Metagabbro from the Grenville Orogen, Ontario. Lithos, 260: 356–370. Google Scholar
  35. Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralogist, 68: 277–279. Google Scholar
  36. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623–651. Google Scholar
  37. Ma, D. Q., Du, S. H., Xiao, Z. F., 2002. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 21(2): 151–161 (in Chinese with English Abstract)Google Scholar
  38. Ma, D. Q., Li, Z. C., Xiao, Z. F., 1997. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientia Sinica, 18(3): 233–241 (in Chinese with English Abstract)Google Scholar
  39. Mason, R., 1967. Electron-Probe Microanalysis of Coronas in a Troctolite from Sulitjelma, Norway. Mineralogical Magazine, 36(280): 504–514. Google Scholar
  40. Mercier, J. C., 1976. Single-Pyroxene Geothermometry and Geobarometry. American Mineralogist, 61: 603–615Google Scholar
  41. Meurer, W. P., Claeson, D. T., 2002. Evolution of Crystallizing Interstitial Liquid in an Arc-Related Cumulate Determined by LA ICP-MS Mapping of a Large Amphibole Oikocryst. Journal of Petrology, 43(4): 607–629. Google Scholar
  42. Mongkoltip, P., Ashworth, J. R., 1983. Quantitative Estimation of an Open-System Symplectite-Forming Reaction: Restricted Diffusion of Al and Si in Coronas around Olivine. Journal of Petrology, 24(4): 635–661. Google Scholar
  43. Muir, I. D., Tilley, C. E., 1957. Contribution to the Petrology of Hawaiian Basalts, 1. The Picrite Basalts of Kilauea. American Journal of Science, 255(4): 241–253Google Scholar
  44. Nilsen, O., 1973. Petrology of the Hyllingen Gabbro Complex, Sør-Trøndelag, Norway. Norsk Geologisk Tidsskrift, 53: 213–231Google Scholar
  45. Otten, M. T., 1984. The Origin of Brown Hornblende in the Artfjället Gab-bro and Dolerites. Contributions to Mineralogy and Petrology, 86(2): 189–199. Google Scholar
  46. Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577–594. Google Scholar
  47. Peng, S. B., Li, C. N., Kusky, T. M., et al., 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1): 8–20 (in Chinese with English Abstract)Google Scholar
  48. Pognante, U., Kienast, J. R., 1987. Blueschist and Eclogite Transformations in Fe-Ti Gabbros: A Case from the Western Alps Ophiolites. Journal of Petrology, 28(2): 271–292. Google Scholar
  49. Polat, A., Fryer, B. J., Samson, I. M., et al., 2012. Geochemistry of Ul-tramafic Rocks and Hornblendite Veins in the Fiskenæsset Layered Anorthosite Complex, SW Greenland: Evidence for Hydrous Upper Mantle in the Archean. Precambrian Research, 214/215: 124–153. Google Scholar
  50. Turner, S. P., Stüwe, K., 1992. Low-Pressure Corona Textures between Olivine and Plagioclase in Unmetamorphosed Gabbros from Black Hill, South Australia. Mineralogical Magazine, 56(385): 503–509. Google Scholar
  51. van Lamoen, H., 1979. Coronas in Olivine Gabbros and Iron Ores from Susimäki and Riuttamaa, Finland. Contributions to Mineralogy and Petrology, 68(3): 259–268. Google Scholar
  52. Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200–203: 26–37. Google Scholar
  53. Wu, Y., Chen, S. Y., Qin, M. K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4): 1070–1087 (in Chinese with English Abstract)Google Scholar
  54. Xia, B., Yang, Q., Chen, N. S., et al., 2018. Phase Equilibrium Modeling of Retrograded Eclogite at the Kekesu Valley, Eastern Segment of SW Tianshan Orogen and Tectonic Implications. Journal of Earth Science, 29(5): 1060–1073. Google Scholar
  55. Xie, Q. H., Zhang, Z. C., Cheng, Z. G., et al., 2017. Interstitial Microstruc-tures in Ji’nan Mafic Intrusion, North China Craton: Magmatic or Hydrothermal Origin?. European Journal of Mineralogy, 29(5): 839–850. Google Scholar
  56. Zeck, H. P., Shenouda, H. H., Rønsbo, J. G., et al., 1982. Hypersthene-Ilmenite(/Magnetite) Symplectites in Coronitic Olivine-Gabbronorites. Lithos, 15(3): 173–182. Google Scholar
  57. Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleopro-terozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3): 306–318. Google Scholar
  58. Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241–1260. Google Scholar
  59. Zhang, Z. C., Hou, T., Li, H. M., et al., 2014. Enrichment Mechanism of Iron in Magmatic-Hydrothermal System. Acta Petrologica Sinica, 30(5): 1189–1204 (in Chinese with English Abstract)Google Scholar
  60. Zhong, X., Xi, A. H., Ge, Y. H. et al., 2018. Crystallization Sequence of Minerals and Origin of the Fe-Ti-V Oxide Ores from the Baima Layered Intrusion in the Panxi Area. Acta Mineralogica Sinica, 38(4): 449–461 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  2. 2.College of Desert Control Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
  3. 3.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  4. 4.School of Earth SciencesLanzhou UniversityLanzhouChina

Personalised recommendations