Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 603–620 | Cite as

Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence

  • Yuting CaoEmail author
  • Liang Liu
  • Chao Wang
  • Cong Zhang
  • Lei Kang
  • Wenqiang Yang
  • Xiaohui Zhu
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 9 Downloads

Abstract

The kyanite-bearing garnet pelitic gneiss from the Jianggalesayi area in southern Altyn Tagh high pressure/ultra-high pressure belt was proved to have been experienced UHP metamorphism (>12 GPa) by the discovery of kyanite and spinel exsolution microstructure in quartz (precursor stishovite). In this study, three stages of retrograded metamorphism (M2–M4) after the UHP metamorphism (M1) were identified for the UHP pelitic gneiss. The HP granulite-facies stage (M2) was characterized by the mineral assemblage of garnet+kyanite+K-feldspar+rutile+quartz±ilmenite, recording the P-T condition of >1.12 GPa and ≈850–930 ºC. The granulite-facies stage (M3) was represented by the mineral assemblage of garnet rim+K-feldspar+sillimanite (Sill1)+biotite (Bt1)+plagioclase (Pl1)+ilmenite+quartz, and confined under P-T conditions of 0.5–0.8 GPa and ≈770–795 ºC. The late cooling stage M4 was accompanied by the appearance of fine-grained Pl2, Sill2 and Bt2 in the matrix, and the P-T conditions were 0.4–0.6 GPa and <675 ºC. A clockwised P-T path was obtained for the pelitic gneiss in the P-T pseudosection, which showed a deep subduction/collision processes with subsequent exhumation and cooling. Combined with the corresponding multistage metamorphic assemblages, the age dating results implied that the zircons from the gneiss have integrated the recording peak metamorphic (M1, 484±3 Ma) and retrograded metamorphic ages (M2 to M3, 450±2 Ma). There was about 32 Ma interval during the first exhumation from the upper mantle depth (>350 km) to the lower crust depth (≈40–20 km), resulting in an average exhumation rate of 9.11–9.70 mm/yr. In the southern Altyn Tagh region, the HP and UHP rocks from different areas had identical peak metamorphic ages. Therefore, contemporary UHP and HP rocks with different metamorphic evolutions were recognized coexisting in the same orogenic belt, which can be interpreted by the model of subduction channel. The continental crustal were subducted to different depths along the direction of the subduction channels at ≈500 Ma, suffered different grade metamorphism, and then returned to the surface along the subduction channel.

Key words

southern Altyn Tagh HP/UHP belt kyanite-bearing garnet pelitic gneiss P-T pseudosection subduction channel continental deep subduction and exhumation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 41872053), the NSF of Shandong Province (No. ZR2019BD046), the Chinese Ministry of Science and Technology (No. 2015CB856103), the Opening Foundation of the State Key Laboratory of Continental Dynamics, Northwest University (No. 17LCD07), and SDUST Research Fund (No. 2015TDJH101). We are grateful to Drs. Xiaoming Liu, Jianqi Wang, Huadong Gong, and Chunrong Diwu for their help with chemical and isotopic analyses at Northwest University, China. Thanks are due to the editors and the two anonymous reviewers for their constructive comments that greatly helped to improve the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0896-7.

Supplementary material

12583_2019_896_MOESM1_ESM.xls (32 kb)
Supplementary material, approximately 32 KB.

References Cited

  1. Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223–240.  https://doi.org/10.1016/j.jseaes.2017.09.009 CrossRefGoogle Scholar
  2. Cao, Y. T., Liu, L., Wang, C., et al., 2009. P-T Path of Early Paleozoic Pelitic High-Pressure Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 25: 2260–2270 (in Chinese with English Abstract)Google Scholar
  3. Cao, Y. T., Liu, L., Wang, C., et al., 2019. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Biotite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170: 274–293.  https://doi.org/10.1016/j.jseaes.2018.11.005 CrossRefGoogle Scholar
  4. Cao, Y. T., Liu, L., Wang, C., et al., 2015. LA-ICP-MS Zircon U-Pb Dating of Bashikourgan Rock Group of Changcheng System in Munabulake Area of Southern Altun Mountains and Its Significance. Geological Bulletin of China, 34: 1446–1458 (in Chinese with English Abstract)Google Scholar
  5. Cao, Y. T., Liu, L., Wang, C., et al., 2013. Determination and Implication of the HP Politic Granulite from the Munabulake Area in the South Altyn Tagh. Acta Petrologica Sinica, 29: 1727–1739 (in Chinese with English Abstract)Google Scholar
  6. Carswell, D. A., Compagnoni, R., 2003. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy, 5: 508Google Scholar
  7. Carswell, D. A., Wilson, R. N., Zhai, M. G., 2000. Metamorphic Evolution, Mineral Chemistry and Thermobarometry of Schists and Orthogneisses Hosting Ultra-High Pressure Eclogites in the Dabieshan of Central China. Lithos, 52(1/2/3/4): 121–155.  https://doi.org/10.1016/s0024-4937(99)00088-2 CrossRefGoogle Scholar
  8. Carswell, D. A., Zhang, R. Y., 1999. Petrographic Characteristics and Metamorphic Evolution of Ultrahigh-Pressure Eclogites in Plate-Collision Belts. International Geology Review, 41(9): 781–798.  https://doi.org/10.1080/00206819909465169 CrossRefGoogle Scholar
  9. Chang, Z. S., Vervoort, J. D., McClelland, W. C., et al., 2006. U-Pb Dating of Zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(5): 1–14.  https://doi.org/10.1029/2005gc001100 CrossRefGoogle Scholar
  10. Chen, D. L., Liu, L., 2011. New Data on the Chronology of Eclogite and Associated Rock from Guanpo Area, North Qinling Orogeny and Its Constraint on Nature of North Qinling HP-UHP Eclogite Terrane. Earth Science Frontiers, 18: 158–169 (in Chinese with English Abstract)Google Scholar
  11. Chen, D. L., Liu, L., Sun, Y., et al., 2004. LA-ICP-MS Zircon U-Pb Dating for High-Pressure Basic Granulite From≨orth Qinling and Its Geological Significance. Chinese Science Bulletin, 49(18): 1901–1908 (in Chinese)Google Scholar
  12. Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 259–272.  https://doi.org/10.1016/j.jseaes.2008.12.001 CrossRefGoogle Scholar
  13. Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136–139: 187–200.  https://doi.org/10.1016/j.lithos.2011.11.006 CrossRefGoogle Scholar
  14. Chen, D. L., Ren, Y. F., Gong, X. G., et al., 2015. Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling. Acta Petrologica Sinica, 31(7): 1841–1854 (in Chinese with English Abstract)Google Scholar
  15. Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219–1235.  https://doi.org/10.1007/s12583-017-956-9 CrossRefGoogle Scholar
  16. Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps: A First Record and some Consequences. Contributions to Mineralogy and Petrology, 86(2): 107–118.  https://doi.org/10.1007/bf00381838 CrossRefGoogle Scholar
  17. Chopin, C., 2003. Ultrahigh-Pressure Metamorphism: Tracing Continental Crust into the Mantle. Earth and Planetary Science Letters, 212(1/2): 1–14.  https://doi.org/10.1016/s0012-821x(03)00261-9 CrossRefGoogle Scholar
  18. Coleman, R. G., Wang, X. M., 1995. Overview of the Geology and Tectonics of UHPM. In: Coleman, R. G., Wang, X. M., eds., Ultrahigh Pressure Metamorphism. Cambridge University Press, Cambridge. 1–32CrossRefGoogle Scholar
  19. Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53: 469–500CrossRefGoogle Scholar
  20. Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102.  https://doi.org/10.1016/0012-821x(94)00237-s CrossRefGoogle Scholar
  21. Dong, J., Wei, C. J., Clarke, G. L., et al., 2018. Metamorphic Evolution during Deep Subduction and Exhumation of Continental Crust: Insights from Felsic Granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965–1990.  https://doi.org/10.1093/petrology/egy086 Google Scholar
  22. Enami, M., 1998. Pressure-Temperature Path of Sanbagawa Prograde Metamorphism Deduced from Grossular Zoning of Garnet. Journal of Metamorphic Geology, 16(1): 97–106.  https://doi.org/10.1111/j.1525-1314.1998.00058.x CrossRefGoogle Scholar
  23. England, P. C., Holland, T. J. B., 1979. Archimedes and the Tauern Eclogites: The Role of Buoyancy in the Preservation of Exotic Eclogite Blocks. Earth and Planetary Science Letters, 44(2): 287–294.  https://doi.org/10.1016/0012-821x(79)90177-8 CrossRefGoogle Scholar
  24. Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 253–275.  https://doi.org/10.1016/s0031-9201(01)00231-x CrossRefGoogle Scholar
  25. Ernst, W. G., 2006. Preservation/Exhumation of Ultrahigh-Pressure Subduction Complexes. Lithos, 92(3/4): 321–335.  https://doi.org/10.1016/j.lithos.2006.03.049 CrossRefGoogle Scholar
  26. Ernst, W. G., Liou, J. G., 1999. Overview of UHP Metamorphism and Tectonics in Well-Studied Collisional Orogens. International Geology Review, 41(6): 477–493.  https://doi.org/10.1080/00206819909465153 CrossRefGoogle Scholar
  27. Ernst, W. G., Maruyama, S., Wallis, S., 1997. Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust. Proceedings of the National Academy of Sciences, 94(18): 9532–9537.  https://doi.org/10.1073/pnas.94.18.9532 CrossRefGoogle Scholar
  28. Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo–Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35(1): 73–110.  https://doi.org/10.1146/annurev.earth.35.031306.140146 CrossRefGoogle Scholar
  29. Gai, Y. S., Liu, L., Wang, C., et al., 2017. Discovery of Coesite in Eclogite from Keqike Jianggalesayi: New Evidence for Ultrahigh-Pressure Metamorphism in South Altyn Tagh, Northwestern China. Science Bulletin, 62(15): 1048–1051.  https://doi.org/10.1016/j.scib.2017.07.008 CrossRefGoogle Scholar
  30. Gong, X. K., Chen, D. L., Ren, Y. F., et al., 2016. Identification of Coesite- Bearing Amphibolite in the North Qinling and Its Geological Significance. Chinese Science Bulletin, 61: 1365–1378 (in Chinese)Google Scholar
  31. Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383.  https://doi.org/10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  32. Hsü, K. J., 1971. Franciscan Mélanges as a Model for Eugeosynclinal Sedimentation and Underthrusting Tectonics. Journal of Geophysical Research, 76(5): 1162–1170.  https://doi.org/10.1029/jb076i005p01162 CrossRefGoogle Scholar
  33. Hu, N. G., Zhao, D. L., Xu, B. Q., et al., 1994. Discovery and Significance of Coesite Eclogite in Northern Qinling Mountain. Chinese Science Bulletin, 24: 2013 (in Chinese)Google Scholar
  34. Hu, N. G., Zhao, D. L., Xu, B. Q., et al., 1995. Petrography and Metamorphism Study on High-Ultrahigh Pressure Eclogite from Guanpo Area, North Qinling Mountain. Journal of Mineralogy and Petrology, 15(4): 1–9 (in Chinese with English Abstract)Google Scholar
  35. Irifune, T., Ringwood, A. E., 1993. Phase Transformations in Subducted Oceanic Crust and Buoyancy Relationships at Depths of 600–800 km in the Mantle. Earth and Planetary Science Letters, 117(1/2): 101–110.  https://doi.org/10.1016/0012-821x(93)90120-x CrossRefGoogle Scholar
  36. Irifune, T., Ringwood, A. E., Hibberson, W. O., 1994. Subduction of Continental Crust and Terrigenous and Pelagic Sediments: An Experimental Study. Earth and Planetary Science Letters, 126(4): 351–368.  https://doi.org/10.1016/0012-821x(94)90117-1 CrossRefGoogle Scholar
  37. Kang, L., Liu, L., Wang, C., et al., 2014. Geochemistry and Zircon U-Pb Dating of Changshagou Adakite from the South Altyn UHPM Terrane: Evidence of the Partial Melting of the Lower Crust. Acta Geologica Sinica—English Edition, 88(5): 1454–1465.  https://doi.org/10.1111/1755-6724.12311 CrossRefGoogle Scholar
  38. Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–907.  https://doi.org/10.1111/jmg.12049 CrossRefGoogle Scholar
  39. Korhonen, F. J., Powell, R., Stout, J. H., 2012. Stability of Sapphirine+Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21–36.  https://doi.org/10.1111/j.1525-1314.2011.00954.x CrossRefGoogle Scholar
  40. Kylander-Clark, A. R. C., Hacker, B. R., Mattinson, J. M., 2008. Slow Exhumation of UHP Terranes: Titanite and Rutile Ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 272(3/4): 531–540.  https://doi.org/10.1016/j.epsl.2008.05.019 CrossRefGoogle Scholar
  41. Lei, H. C., Xu, H. J., 2018. A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 29(5): 1167–1180.  https://doi.org/10.1007/s12583-018-0846-9 CrossRefGoogle Scholar
  42. Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphism Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12): 3753–3765 (in Chinese with English Abstract)Google Scholar
  43. Li, X. M., Ma, Z. P., Sun, J. M., et al., 2009. Characteristics and Age Study about the Yuemakeqi Mafic-Ultramagic Rock in the Southern Altyn Fault. Acta Petrologica Sinica, 4: 862–872 (in Chinese with English Abstract)Google Scholar
  44. Li, Y., Zhang, C., Liu, X. Y., et al., 2019. The Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt. Journal of Earth Science, 30(3): 510–524.  https://doi.org/10.1007/s12583-019-0894-9 Google Scholar
  45. Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30: 79–96.  https://doi.org/10.1016/j.gr.2015.09.012 CrossRefGoogle Scholar
  46. Liou, J. G., Ernst, W. G., Zhang, R. Y., et al., 2009. Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 35(3/4): 199–231.  https://doi.org/10.1016/j.jseaes.2008.10.012 CrossRefGoogle Scholar
  47. Liu, F. L., Liou, J. G., 2010. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1–39.  https://doi.org/10.1016/j.jseaes.2010.08.007 CrossRefGoogle Scholar
  48. Liu, L., Che, Z. C., Wang, Y., et al., 1998. The Evidence of Sm-Nd Isochron Age for the Early Paleozoic Ophiolite in Mangya Area, Altun Mountains. Chinese Science Bulletin, 43(9): 754–756.  https://doi.org/10.1007/bf02898953 CrossRefGoogle Scholar
  49. Liu, L., Yang, J. X., Chen, D. L., et al., 2010. Progress and Controversy in the Study of HP-UHP Metamorphic Terranes in the West and Middle Central China Orogen. Journal of Earth Science, 21(5): 581–597.  https://doi.org/10.1007/s12583-010-0128-7 CrossRefGoogle Scholar
  50. Liu, L., Cao, Y. T., Chen, D. L., et al., 2013a. New Progresses on the HP-UHP Metamorphism in the South Altyn Tagh and the North Qinling. Chinese Science Bulletin, 22: 2113–2123 (in Chinese)Google Scholar
  51. Liu, L., Liao, X. Y., Zhang, C. L., et al., 2013b. Multi-Metamorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29: 1634–1656 (in Chinese with English Abstract)Google Scholar
  52. Liu, L., Chen, D. L., Sun, Y., et al., 2003. Discovery of Relic Majoritic Garnet in Felsic Metamorphic Rocks of Qinling Complex, North Qinling Orogenic Belt, China. Alice Wain Memorial Western Norway Eclogite Field Symposium, Selje. 82Google Scholar
  53. Liu, L., Chen, D. L., Zhang, A. D., et al., 2005. Ultrahigh Pressure (>7 GPa) Gneissic K-Feldspar (-Bearing) Garnet Clinopyroxenite in the Altyn Tagh, NW China: Evidence from Clinopyroxene Exsolution in Garnet. Science in China Series D: Earth Sciences, 35(2): 105–114 (in Chinese)Google Scholar
  54. Liu, L., Kang, L., Cao, Y. T., et al., 2015. Early Paleozoic Granitic Magmatism Related to the Processes from Subduction to Collision in South Altyn, NW China. Science China Earth Sciences, 58(9): 1513–1522.  https://doi.org/10.1007/s11430-015-5151-1 CrossRefGoogle Scholar
  55. Liu, L., Liao, X. Y., Wang, Y. W., et al., 2016. Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 159: 58–81.  https://doi.org/10.1016/j.earscirev.2016.05.005 CrossRefGoogle Scholar
  56. Liu, L., Sun, Y., Luo, J. H., et al., 2004. Ultra-High Pressure Metamorphism of Granitic Gneiss in the Yinggelisayi Area, Altun Mountains, NW China. Science in China Series D: Earth Sciences, 47(4): 338–346.  https://doi.org/10.1360/02yd0466 CrossRefGoogle Scholar
  57. Liu, L., Sun, Y., Xiao, P. X., et al., 2002. Discovery of Ultrahigh-Pressure Magnesite-Bearing Garnet Lherzolite (>3.8 GPa) in the Altyn Tagh, Northwest China. Chinese Science Bulletin, 47(11): 881–886.  https://doi.org/10.1360/02tb9197 CrossRefGoogle Scholar
  58. Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136–139: 10–26.  https://doi.org/10.1016/j.lithos.2011.09.014 CrossRefGoogle Scholar
  59. Liu, L., Wang, C., Chen, D. L., et al., 2009. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. Journal of Asian Earth Sciences, 35(3/4): 232–244.  https://doi.org/10.1016/j.jseaes.2008.10.007 CrossRefGoogle Scholar
  60. Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence of Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353–362.  https://doi.org/10.1016/j.epsl.2017.12.023 CrossRefGoogle Scholar
  61. Liu, L., Zhang, J. F., Green, H. W. II, et al., 2007a. Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to >350 km. Earth and Planetary Science Letters, 263(3/4): 180–191.  https://doi.org/10.1016/j.epsl.2007.08.010 CrossRefGoogle Scholar
  62. Liu, L., Zhang, A. D., Chen, D. L., et al., 2007b. Implications Based on LA-ICP-MS Zircon U-Pb Ages of Eclogite and Its Country Rock from Jianggalesayi Area, Altyn Tagh, China. Earth Science Frontiers, 14(1): 98–107.  https://doi.org/10.1016/s1872-5791(07)60004-9 CrossRefGoogle Scholar
  63. Liu, L., Zhou, D. W., Dong, Y. P., et al., 1995. High Pressure Metabasites and Their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain. Acta Petrologica Sinica, 11(2): 127–136 (in Chinese with English Abstract)Google Scholar
  64. Liu, L., Zhou, D. W., Wang, Y., et al., 1996. Study and Implication of the High Pressure Felsic Granulite in the Qinling Complex of East Qinling. Science in China Series D: Earth Sciences, 39: 60–68 (in Chinese)Google Scholar
  65. Liu, Y. S., 2011. Guide Book for ICPMSDataCal. China University of Geosciences, Wuhan. 1–32 (in Chinese)Google Scholar
  66. Ludwig, K. R., 2003. Userʼs Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 4: 71Google Scholar
  67. Ma, Z. P., Li, X. M., Sun, J. M., et al., 2009. Discovery of Layered Mafic- Ultramafic Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication: A Pilot Study on Its Petrological and Geochemical Characteristics. Acta Petrologica Sinica, 25: 793–804 (in Chinese with English Abstract)Google Scholar
  68. Ma, Z. P., Li, X. M., Xu, X. Y., et al., 2011. Zircon LA-ICP-MS U-Pb Isotopic Dating for Qingshuiquan Layered Maficulmafic Intrusion Southern Altun Orogen, in Northwestern China and Its Implication. Geology in China, 38: 1071–1078 (in Chinese with English Abstract)Google Scholar
  69. Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6): 485–594.  https://doi.org/10.1080/00206819709465347 CrossRefGoogle Scholar
  70. Meng, Y. K., Santosh, M., Li, R. H., et al., 2018a. Petrogenesis and Tectonic Implications of Early Cretaceous Volcanic Rocks from Lingshan Island in the Sulu Orogenic Belt. Lithos, 312/313: 244–257.  https://doi.org/10.1016/j.lithos.2018.05.009 CrossRefGoogle Scholar
  71. Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018b. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica—English Edition, 92(2): 462–481.  https://doi.org/10.1111/1755-6724.13537 CrossRefGoogle Scholar
  72. Meng, Y. K., Xu, Z. Q., Gao, C. S., 2018c. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3): 513–546 (in Chinese with English Abstract)Google Scholar
  73. Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176: 27–41.  https://doi.org/10.1016/j.jseaes.2019.01.041 CrossRefGoogle Scholar
  74. O’Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20.  https://doi.org/10.1046/j.1525-1314.2003.00420.x CrossRefGoogle Scholar
  75. Powell, R., Holland, T. J. B., 1988. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 6(2): 173–204.  https://doi.org/10.1111/j.1525-1314.1988.tb00415.x CrossRefGoogle Scholar
  76. Powell, R., White, R. W., Green, E. C. R., et al., 2014. On Parameterizing Thermodynamic Descriptions of Minerals for Petrological Calculations. Journal of Metamorphic Geology, 32(3): 245–260.  https://doi.org/10.1111/jmg.12070 CrossRefGoogle Scholar
  77. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138.  https://doi.org/10.1016/s0009-2541(01)00355-2 CrossRefGoogle Scholar
  78. Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by IOM Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geoscience. Springer-Verlag Berlin Heidelberg, Berlin. 373–400Google Scholar
  79. Schaltegger, U., Fanning, C. M., Günther, D., et al., 1999. Growth, Annealing and Recrystallization of Zircon and Preservation of Monazite in High-Grade Metamorphism: Conventional and in-situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 134(2/3): 186–201.  https://doi.org/10.1007/s004100050478 CrossRefGoogle Scholar
  80. Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research, 91(B10): 10229–10245.  https://doi.org/10.1029/jb091ib10p10229 CrossRefGoogle Scholar
  81. Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310(5979): 641–644.  https://doi.org/10.1038/310641a0 CrossRefGoogle Scholar
  82. Song, S. G., Su, L., Niu, Y. L., et al., 2009. Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction: A Review. Journal of Asian Earth Sciences, 35(3/4): 285–297.  https://doi.org/10.1016/j.jseaes.2008.11.009 CrossRefGoogle Scholar
  83. Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003a. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631–644.  https://doi.org/10.1046/j.1525-1314.2003.00469.x CrossRefGoogle Scholar
  84. Song, S. G., Yang, J. S., Liou, J. G., et al., 2003b. Petrology, Geochemistry and Isotopic Ages of Eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 70(3/4): 195–211.  https://doi.org/10.1016/s0024-4937(03)00099-9 CrossRefGoogle Scholar
  85. Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9): 1330–1336.  https://doi.org/10.2138/am-2004-8-922 CrossRefGoogle Scholar
  86. Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435–455.  https://doi.org/10.1093/petrology/egi080 CrossRefGoogle Scholar
  87. Song, S. G., Zhang, L. F., Su, L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2): 99–118.  https://doi.org/10.1016/j.epsl.2005.02.036 CrossRefGoogle Scholar
  88. Spear, F. S., 1991. On the Interpretation of Peak Metamorphic Temperatures in Light of Garnet Diffusion during Cooling. Journal of Metamorphic Geology, 9(4): 379–388.  https://doi.org/10.1111/j.1525-1314.1991.tb00533.x CrossRefGoogle Scholar
  89. Spear, F. S., Selverstone, J., Hickmott, D., et al., 1984. P-T Paths from Garnet Zoning: A New Technique for Deciphering Tectonic Processes in Crystalline Terranes. Geology, 12(2): 87.  https://doi.org/10.1130/0091-7613(1984)12-87:ppfgza2.0.co.2 CrossRefGoogle Scholar
  90. Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039.  https://doi.org/10.1007/s12583-018-0854-9 CrossRefGoogle Scholar
  91. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  92. Wang, C., Liu, L., Chen, D. L., et al., 2011. Petrology, Geochemistry, Geochronology and Metamorphic Evolution of Garnet Peridotites from South Altyn UHP Terrane, NW China: Records Related to Crustal Slab Subduction and Exhumation History. In: Dobrzhinetskaya, L., Cuthbert, S., Faryad, W., et al., eds., UHPM: 25 Years after Discovery of Coesite and Diamond. Elsevier, London. 541–577Google Scholar
  93. Wang, C., Liu, L., Xiao, P. X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202/203: 1–20.  https://doi.org/10.1016/j.lithos.2014.05.016 CrossRefGoogle Scholar
  94. Wang, C., Liu, L., Yang, W. Q., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193–208.  https://doi.org/10.1016/j.precamres.2013.02.003 CrossRefGoogle Scholar
  95. Wang, L., Kusky, T. M., Li, S. Z., 2010. Structural Geometry of an Exhumed UHP Terrane in the Eastern Sulu Orogen, China: Implications for Continental Collisional Processes. Journal of Structural Geology, 32(4): 423–444.  https://doi.org/10.1016/j.jsg.2010.01.012 CrossRefGoogle Scholar
  96. Wang, L., Wang, S. J., Brown, M., et al., 2018. On the Survival of Intergranular Coesite in UHP Eclogite. Journal of Metamorphic Geology, 36(2): 173–194.  https://doi.org/10.1111/jmg.12288 CrossRefGoogle Scholar
  97. White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity- Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–286.  https://doi.org/10.1111/jmg.12071 CrossRefGoogle Scholar
  98. Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism— Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61–74CrossRefGoogle Scholar
  99. Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185–187.  https://doi.org/10.2138/am.2010.3371 CrossRefGoogle Scholar
  100. Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28: 9–39CrossRefGoogle Scholar
  101. Xia, Q. X., Zheng, Y. F., 2011. The Composition and Chemical Zoning in Garnet from High to Ultrahigh Pressure Metamorphic Rocks. Acta Petrologica Sinica, 27: 433–450 (in Chinese with English Abstract)Google Scholar
  102. Xiang, H., Zhang, Z. M., Zhao, L. M., et al., 2018. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 29(5): 1116–1131.  https://doi.org/10.1007/s12583-018-0855-8 CrossRefGoogle Scholar
  103. Yang, J. S., Liu, F. L., Wu, C., et al., 2005. Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 47(4): 327–343.  https://doi.org/10.2747/0020-6814.47.4.327 CrossRefGoogle Scholar
  104. Yang, J. S., Xu, Z. Q., Dobrzhinetskaya, L. F., et al., 2003. Discovery of Metamorphic Diamonds in Central China: An Indication of a 4 000-km-Long Zone of Deep Subduction Resulting from Multiple Continental Collisions. Terra Nova, 15(6): 370–379.  https://doi.org/10.1046/j.1365-3121.2003.00511.x CrossRefGoogle Scholar
  105. Yang, W. Q., Liu, L., Ding, H. B., et al., 2012. Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagn and Its Geological Significance. Acta Petrologica Sinica, 28: 4139–4150 (in Chinese with English Abstract)Google Scholar
  106. Yu, S. Y., Zhang, J. X., Del Real, P. G., 2012. Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet: Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny. Gondwana Research, 21(1): 167–179.  https://doi.org/10.1016/j.gr.2011.07.024 CrossRefGoogle Scholar
  107. Yu, S. Y., Zhang, J. X., Hou, K. J., 2011a. Two Constrasting Magmatic Events in the Dulan UHP Metamorphic Terrane: Implication for Collisional Orogeny. Acta Petrologica Sinica, 27(11): 3335–3349 (in Chinese with English Abstract)Google Scholar
  108. Yu, S. Y., Zhang, J. X., Real, P. G. D., 2011b. Petrology and P-T Path of High-Pressure Granulite from the Dulan Area, North Qaidam Mountains, Northwestern China. Journal of Asian Earth Sciences, 42(4): 641–660.  https://doi.org/10.1016/j.jseaes.2010.11.009 CrossRefGoogle Scholar
  109. Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901–919.  https://doi.org/10.1016/j.gr.2012.07.018 CrossRefGoogle Scholar
  110. Yu, S. Y., Zhang, J. X., Li, J. P., 2009. Metamorphism History and Dynamics of High-Pressure Granulites in the Dulan Area of the North Qaidam Mountains, Northwest China. Acta Petrologica Sinica, 25(9): 2224–2234 (in Chinese with English Abstract)Google Scholar
  111. Yu, S. Y., Zhang, J. X., Mattinson, C. G., et al., 2014. Paleozoic HP Granulite- Facies Metamorphism and Anatexis in the Dulan Area of the North Qaidam UHP Terrane, Western China: Constraints from Petrology, Zircon U-Pb and Amphibole Ar-Ar Geochronology. Lithos, 198/199: 58–76.  https://doi.org/10.1016/j.lithos.2014.03.016 CrossRefGoogle Scholar
  112. Zhang, A. D., Liu, L., Sun, Y., et al., 2004. SHRIMP U-Pb Zircon Ages for the UHP Metamorphosed Granitoid Gneiss in Altyn Tagh and Their Geological Significance. Chinese Science Bulletin, 49(23): 2527–2532Google Scholar
  113. Zhang, C., Zhang, L. F., Roermund, H. V., et al., 2011. Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 42(4): 752–767.  https://doi.org/10.1016/j.jseaes.2011.04.002 CrossRefGoogle Scholar
  114. Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009a. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287–1300.  https://doi.org/10.1127/0935-1221/2009/0021-1989 CrossRefGoogle Scholar
  115. Zhang, G. B., Zhang, L. F., Song, S. G., et al., 2009b. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3/4): 310–322.  https://doi.org/10.1016/j.jseaes.2008.11.013 CrossRefGoogle Scholar
  116. Zhang, G. B., Song, S. G., Zhang, L. F., et al., 2008. The Subducted Oceanic Crust within Continental-Type UHP Metamorphic Belt in the North Qaidam, NW China: Evidence from Petrology, Geochemistry and Geochronology. Lithos, 104(1/2/3/4): 99–118.  https://doi.org/10.1016/j.lithos.2007.12.001 CrossRefGoogle Scholar
  117. Zhang, J. X., Meng, F. C., 2005. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3): 265–269.  https://doi.org/10.1007/bf02897537 CrossRefGoogle Scholar
  118. Zhang, J. X., Yang, J. S., Xu, Z. Q., et al., 2002. Evidence for UHP Metamorphism of Eclogites from the Altun Mountains. Chinese Science Bulletin, 47(9): 751–755.  https://doi.org/10.1360/02tb9170 CrossRefGoogle Scholar
  119. Zhang, J. X., Yu, S. Y., Meng, F. C., 2011. Ployphase Early Paleozoic Metamorphism in the Northern Qinling Orogenic Belt. Acta Petrologica Sinica, 27(4), 1179–1190 (in Chinese with English Abstract)Google Scholar
  120. Zhang, J. X., Yu, S. Y., Meng, F. C., et al., 2009a. Paired High-Pressure Granulite and Eclogite in Collision Orogens and Their Geodynamic Implications. Acta Petrologica Sinica, 25: 2050–2066 (in Chinese with English Abstract)Google Scholar
  121. Zhang, J. X., Meng, F. C., Li, J. P., et al., 2009b. Coesite in Eclogite from the North Qaidam Mountains and Its Implications. Chinese Science Bulletin, 54(6): 1105–1110.  https://doi.org/10.1007/s11434-009-0074-x Google Scholar
  122. Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 2001. Petrology and Geochronology of Eclogites from the Western Segment of the Altyn Tagh, Northwestern China. Lithos, 56(2/3): 187–206.  https://doi.org/10.1016/s0024-4937(00)00052-9 CrossRefGoogle Scholar
  123. Zhao, G. C., Yin, C. Q., Guo, J. H., et al., 2010. Metamorphism of the Luliang Amphibolite: Implications for the Tectonic Evolution of the North China Craton. American Journal of Science, 310(10): 1480–1502.  https://doi.org/10.2475/10.2010.10 CrossRefGoogle Scholar
  124. Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5–48.  https://doi.org/10.1016/j.chemgeo.2012.02.005 CrossRefGoogle Scholar
  125. Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081–3104.  https://doi.org/10.1007/s11434-008-0388-0 Google Scholar
  126. Zhou, X. W., Wei, C. J., Lu, L. Z., 2003. Application of the Garnet-Biotite Geothermometer in High Grade Metapelite: Al-Rich Rock from the Jingshan Group in North Jiaodong, China. Earth Science Frontiers, 10: 353–362 (in Chinese with English Abstract)Google Scholar
  127. Zhu, X. H., Cao, Y. T., Liu, L., et al., 2014. P-T Path and Geochronoloty of High Pressure Granitic Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 30: 3717–3728 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Science & EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest UniversityXi’anChina
  3. 3.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  4. 4.Xi’an Center of Geological SurveyChina Geological SurveyXi’anChina

Personalised recommendations