Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 647–665 | Cite as

Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton

  • Lei LiEmail author
  • Wenjian Zhai
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 25 Downloads

Abstract

Archean high-K granitoids, generally formed after tonalite-trondhjemite-granodiorite (TTGs), are important for understanding crustal reworking of ancient cratons. The Linshan Archean high-K granitoids from the southern Trans-North China Orogen (TNCO) provide a window into the continental crustal evolution of the North China Craton (NCC). They mainly consist of monzogranite and granodiorite which were formed during 2 542–2 503 Ma. The high-K granitoids have high SiO2 (65.86 wt.%–78.08 wt.%), K2O (3.29 wt.%–7.62 wt.%) and low P2O5 (0.01 wt.%–0.27 wt.%). They display right inclined REE patterns with negative Eu anomalies (Eu/Eu*=0.20–0.81). Their spider diagram is characterized by enrichment of Rb, K, Th, U and depletion of Nb, Ta, Zr, Ti. The rocks have positive and variable zircon eHf(t) (+2.5 to +6.6) and whole-rock eNd(t) (+0.7 to +4.5) with two-stage model ages (TDM2Hf=2.87–2.64 Ga; TDM2Nd=2.77–2.50 Ga) similar to those of the Archean TTG-type rocks, amphibolites and diorites in the area. These evidences suggest that the high-K granitoids were produced by partial melting of juvenile crustal rocks. The Linshan high-K granitoids show relatively high whole-rock zircon saturation temperatures (694–889 ºC) and low Sr/Y ratios (0.27–21.1), indicating low pressure partial melting. Combined with other geological evidences, the Linshan high-K granitoids are suggested to have been produced by partial melting of the continental crust in a post-collision extensional environment after an arc-continent collision. Thus, the NCC did not amalgamate together until ca. 2.5 Ga. Compiled zircon U-Pb ages and Hf isotopes reveal that the ca. 2.5 Ga magmatism represents reworking of the continental crust.

Keywords

granitoids petrogenesis Neoarchean North China Craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR16) and the Key Program of the Ministry of Land and Resources of China (No. 1212011220497). Reviews by two anonymous referees are gratefully acknowledged. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0895-8.

References Cited

  1. Anhaeusser, C. R., 2014. Archaean Greenstone Belts and Associated Granitic Rocks—A Review. Journal of African Earth Sciences, 100. 684–732.  https://doi.org/10.1016/j.jafrearsci.2014.07.019
  2. Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4): 457–466.  https://doi.org/10.1016/j.lithos.2010.07.024 Google Scholar
  3. Boily, M., Leclair, A., Maurice, C., et al., 2009. Paleo- to Mesoarchean Basement Recycling and Terrane Definition in the Northeastern Superior Province, Québec, Canada. Precambrian Research, 168(1/2): 23–44.  https://doi.org/10.1016/j.precamres.2008.07.009 Google Scholar
  4. Cao, Z. Q., Zhai, W. J., Jiang, X. F., et al., 2016. About 2.5 Ga Tectono-Metamorphic Event in Southern Margin of North China Craton and Its Significance. Earth Science, 41(4): 570–585 (in Chinese with English Abstract)Google Scholar
  5. Cawthorn, R. G., Strong, D. F., Brown, P. A., 1976. Origin of Corundum-Normative Intrusive and Extrusive Magmas. Nature, 259(5539): 102–104.  https://doi.org/10.1038/259102a0 Google Scholar
  6. Chappell, B. B., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26.  https://doi.org/10.1017/s0263593300007720 Google Scholar
  7. Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplo Granites. Lithos, 46(3): 535–551.  https://doi.org/10.1016/s0024-4937(98)00086-3 Google Scholar
  8. Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489–499.  https://doi.org/10.1046/j.1440-0952.2001.00882.x Google Scholar
  9. Chen, A. X., Zhou, D., Zhang, Q. K., et al., 2018. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 29(1): 78–92.  https://doi.org/10.1007/s12583-017-0817-6 Google Scholar
  10. Chen, C., Lü, X. B., Wu, C. M., et al., 2018. Origin and Geodynamic Implications of Concealed Granite in Shadong Tungsten Deposit, Xinjiang, China: Zircon U-Pb Chronology, Geochemistry, and Sr-Nd-Hf Isotope Constraint. Journal of Earth Science, 29(1): 114–129.  https://doi.org/10.1007/s12583-017-0808-7 Google Scholar
  11. Chen, N. H.-C., Zhao, G. C., Jahn, B. M., et al., 2017. U-Pb Zircon Ages and Hf Isotopes of ≈2.5 Ga Granitoids from the Yinshan Block, North China Craton: Implications for Crustal Growth. Precambrian Research, 303. 171–182.  https://doi.org/10.1016/j.precamres.2017.03.016 Google Scholar
  12. Chen, H. X., Wang, H. Y. C., Peng, T., et al., 2016. Petrogenesis and Geochronology of the Neoarchean–Paleoproterozoic Granitoid and Monzonitic Gneisses in the Taihua Complex: Episodic Magmatism of the Southwestern Trans-North China Orogen. Precambrian Research, 287. 31–47.  https://doi.org/10.1016/j.precamres.2016.10.014 Google Scholar
  13. Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574.  https://doi.org/10.1039/b206707b Google Scholar
  14. Conly, A. G., Brenan, J. M., Bellon, H., et al., 2005. Arc to Rift Transitional Volcanism in the Santa Rosalía Region, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research, 142(3/4): 303–341.  https://doi.org/10.1016/j.jvolgeores.2004.11.013 Google Scholar
  15. Deng, H., Kusky, T., Polat, A., et al., 2016. A 2.5 Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 275. 241–264.  https://doi.org/10.1016/j.precamres.2016.01.024 Google Scholar
  16. Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ≈2.5Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149–170.  https://doi.org/10.1016/j.gr.2011.01.011 Google Scholar
  17. Diwu, C. R., Sun, Y., Lin, C. L., et al., 2010. LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557–2571.  https://doi.org/10.1007/s11434-010-3273-6 Google Scholar
  18. Dong, M. M., Wang, C. M., Yao, E. Y., et al., 2018. LA-ICP-MS Zircon U-Pb Geochronology of the Taihua Complex in Lushan Area of Henan Province and Its Geological Implications. Acta Petrologica et Mineralogica, 37(1): 1–18 (in Chinese with English Abstract)Google Scholar
  19. Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134.  https://doi.org/10.1016/0024-4937(90)90043-z Google Scholar
  20. Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641.  https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 Google Scholar
  21. Faure, M., Trap, P., Lin, W., et al., 2007. Polyorogenic Evolution of the Paleoproterozoic Trans-North China Belt—New Insights from the Lüliangshan-Hengshan-Wutaishan and Fuping Massifs. Episodes, 30(2): 95–106Google Scholar
  22. Farahat, E. S., Mohamed, H. A., Ahmed, A. F., et al., 2007. Origin of I- And A-Type Granitoids from the Eastern Desert of Egypt: Implications for Crustal Growth in the Northern Arabian-Nubian Shield. Journal of African Earth Sciences, 49(1/2): 43–58.  https://doi.org/10.1016/j.jafrearsci.2007.07.002 Google Scholar
  23. Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048.  https://doi.org/10.1093/petrology/42.11.2033 Google Scholar
  24. Frost, C. D., Frost, B. R., Kirkwood, R., et al., 2006. The Tonalite-Trondhjemite-Granodiorite (TTG) to Granodiorite-Granite (GG) Transition in the Late Archean Plutonic Rocks of the Central Wyoming Province. Canadian Journal of Earth Sciences, 43(10): 1419–1444.  https://doi.org/10.1139/e06-082 Google Scholar
  25. Frost, C. D., McLaughlin, J. F., Frost, B. R., et al., 2017. Hadean Origins of Paleoarchean Continental Crust in the Central Wyoming Province. Geological Society of America Bulletin, 129(3/4): 259–280.  https://doi.org/10.1130/b31555.1 Google Scholar
  26. Gardiner, N. J., Hickman, A. H., Kirkland, C. L., et al., 2017. Processes of Crust Formation in the Early Earth Imaged through Hf Isotopes from the East Pilbara Terrane. Precambrian Research, 297. 56–76.  https://doi.org/10.1016/j.precamres.2017.05.004 Google Scholar
  27. Geng, J. Z., Qiu, K. F., Gou, Z. Y., et al., 2017. Tectonic Regime Switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Lu-Hf Isotope of Dangchuan Intrusive Complex in Gansu, China. Geochemistry, 77(4): 637–651.  https://doi.org/10.1016/j.chemer.2017.05.001 Google Scholar
  28. Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517–529.  https://doi.org/10.1016/j.gr.2011.07.006 Google Scholar
  29. Guo, L. S., Liu, S. W., Liu, Y. L., et al., 2008. Zircon Hf Isotopic Features of TTG Gneisses and Formation Environment of Precambrian Sushui Complex in Zhongtiao Moutains. Acta Petrologica Sinica, 24(1): 139–148 (in Chinese with English Abstract)Google Scholar
  30. He, X. H., Zhong, H., Zhao, Z. F., et al., 2018. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 29(4): 920–938.  https://doi.org/10.1007/s12583-018-0788-2 Google Scholar
  31. Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICPMS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595–2604 (in Chinese with English Abstract)Google Scholar
  32. Huang, Q. W., Shi, Y., Liu, M. H., et al., 2018. Geochronology and Geochemistry of the Shahewan and Caoping Granites in South Qinling and Their Significance. Earth Science, 43(Suppl. 2): 83–101.  https://doi.org/10.3799/dqkx.2018.316 (in Chinese with English Abstract)Google Scholar
  33. Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong’er in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134/135: 236–252.  https://doi.org/10.1016/j.lithos.2012.01.004 Google Scholar
  34. Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean-Proterozoic Boundary. Precambrian Research, 233. 337–357.  https://doi.org/10.1016/j.precamres.2013.05.016 Google Scholar
  35. Jia, X. L., 2016. Research for Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in Southern North China Craton: [Dissertation]. Northwest University, Xi’an. 25–170 (in Chinese)Google Scholar
  36. Ju, Y. J., Zhang, X. L., Lai, S. C., et al., 2017. Permian–Triassic Highly-Fractionated I-Type Granites from the Southwestern Qaidam Basin (NW China): Implications for the Evolution of the Paleo-Tethys in the Eastern Kunlun Orogenic Belt. Journal of Earth Science, 28(1): 51–62.  https://doi.org/10.1007/s12583-017-0745-5 Google Scholar
  37. Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397.  https://doi.org/10.1016/s1367-9120(03)00071-3 Google Scholar
  38. Kusky, T. M., 2011. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 20(1): 26–35.  https://doi.org/10.1016/j.gr.2011.01.004 Google Scholar
  39. Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162. 387–432.  https://doi.org/10.1016/j.earscirev.2016.09.002 Google Scholar
  40. Kumar, K. V., Ernst, W. G., Leelanandam, C., et al., 2011. Origin of ≈2.5 Ga Potassic Granite from the Nellore Schist Belt, SE India: Textural, Cathodoluminescence, and SHRIMP U-Pb Data. Contributions to Mineralogy and Petrology, 162(4): 867–888.  https://doi.org/10.1007/s00410-011-0629-0 Google Scholar
  41. Li, J. H., Niu, X. L., Kusky, T. M., et al., 2004. Neoarchean Plate Tectonic Evolution of North China and Its Correlation with Global Cratonic Blocks. Earth Science Frontiers, 11(3): 273–283 (in Chinese with English Abstract)Google Scholar
  42. Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of =3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339–342.  https://doi.org/10.1130/0091-7613(1992)020<0339:romcit>2.3.co;2 Google Scholar
  43. Liu, D. Y., Wan, Y. S., Wu, J. S., et al., 2007. Eoarchean Rocks and Zircons in the North China Craton. In: van Kranendonk, M., Smithies, R. H., Bennett, V., eds., Earth’s Oldest Rocks. Developments in Precambrian Geology, vol. 15. Elsevier, Amsterdam. 251–273.  https://doi.org/10.1016/S0166-2635(07)15035-0 Google Scholar
  44. Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 261(1/2): 140–154.  https://doi.org/10.1016/j.chemgeo.2008.10.041 Google Scholar
  45. Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2008. New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 308(3): 200–231.  https://doi.org/10.2475/03.2008.02 Google Scholar
  46. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 Google Scholar
  47. Lu, J. S., Wang, G. D., Wang, H., et al., 2014. Metamorphic Evolution of the Lushan Terrane in the Precambrian Taihua Complex, Henan Province. Acta Petrologica Sinica, 30(10): 3062–3074 (in Chinese with English Abstract)Google Scholar
  48. Lu, J. S., Wang, G. D., Wang, H., et al., 2015. Zircon SIMS U-Pb Geochronology of the Lushan Terrane: Dating Metamorphism of the Southwestern Terminal of the Palaeoproterozoic Trans-North China Orogen. Geological Magazine, 152(2): 367–377.  https://doi.org/10.1017/s0016756814000430 Google Scholar
  49. Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  50. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of American Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 Google Scholar
  51. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 Google Scholar
  52. Morel, M. L. A., Nebel, O., Nebel-Jacobsen, Y. J., et al., 2008. Hafnium Isotope Characterization of the GJ-1 Zircon Reference Material by Solution and Laser-Ablation MC-ICPMS. Chemical Geology, 255(1/2): 231–235.  https://doi.org/10.1016/j.chemgeo.2008.06.040 Google Scholar
  53. Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148. 312–336.  https://doi.org/10.1016/j.lithos.2012.06.010 Google Scholar
  54. Patchett, P. J., Tatsumoto, M., 1980. Lu-Hf Total-Rock Isochron for the Eucrite Meteorites. Nature, 288(5791): 571–574.  https://doi.org/10.1038/288571a0 Google Scholar
  55. Patiño Douce, A. E., 2004. Vapor-Absent Melting of Tonalite at 15–32 kbar. Journal of Petrology, 46(2): 275–290.  https://doi.org/10.1093/petrology/egh071 Google Scholar
  56. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983.  https://doi.org/10.1093/petrology/25.4.956 Google Scholar
  57. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.  https://doi.org/10.1007/bf00384745 Google Scholar
  58. Pfänder, J. A., Münker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts—Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1/2): 158–172.  https://doi.org/10.1016/j.epsl.2006.11.027 Google Scholar
  59. Qiu, J. S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468–2484 (in Chinese with English Abstract)Google Scholar
  60. Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., Treatise on Geochemistry. The Crust, vol. 3. Elsevier, Amsterdam. 1–64Google Scholar
  61. Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1/2/3/4): 149–167.  https://doi.org/10.1016/j.precamres.2010.02.003 Google Scholar
  62. Shen, Q. H., Qian, X. L., 1995. Archean Rock Associations, Episodes and Tectonic Evolution of China. Acta Geoscientia Sinica, 16(2): 113–120 (in Chinese with English Abstract)Google Scholar
  63. Sun, Q. Y., Zhou, Y. Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton: Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 303. 428–444.  https://doi.org/10.1016/j.precamres.2017.05.018 Google Scholar
  64. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 Google Scholar
  65. Tang, L., Santosh, M., 2018. Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton: An Overview. Geoscience Frontiers, 9(3): 751–768.  https://doi.org/10.1016/j.gsf.2017.04.002 Google Scholar
  66. Tian, W., Liu, S. W., Liu, C. H., et al., 2006. Zircon SHRIMP Geochronology and Geochemistry of TTG Rocks in Sushui Complex from Zhongtiao Mountains with Its Geological Implications. Progress in Natural Science, 16(5): 492–500.  https://doi.org/10.1080/10020070612330025 Google Scholar
  67. Trap, P., Faure, M., Lin, W., et al., 2007. Late Paleoproterozoic (1 900–1 800 Ma) Nappe Stacking and Polyphase Deformation in the Hengshan-Wutaishan Area: Implications for the Understanding of the Trans-North-China Belt, North China Craton. Precambrian Research, 156(1/2): 85–106.  https://doi.org/10.1016/j.precamres.2007.03.001 Google Scholar
  68. Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191–211.  https://doi.org/10.1016/j.precamres.2011.09.008
  69. Verma, S. K., Verma, S. P., Oliveira, E. P., et al., 2016. LA-SF-ICP-MS Zircon U-Pb Geochronology of Granitic Rocks from the Central Bundelkhand Greenstone Complex, Bundelkhand Craton, India. Journal of Asian Earth Sciences, 118. 125–137.  https://doi.org/10.1016/j.jseaes.2015.12.021 Google Scholar
  70. Wan, Y. S., Liu, D. Y., Wang, S. Y., et al., 2009. Early Precambrian Crustal Evolution in the Dengfeng Area, Henan Province (Eastern China): Constraints from Geochemistry and SHRIMP U-Pb Zircon Dating. Acta Geologica Sinica, 83(7): 982–999 (in Chinese with English Abstract)Google Scholar
  71. Wan, Y. S., Liu, D. Y., Wang, W., et al., 2011. Provenance of Meso- to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton: An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 20(1): 219–242.  https://doi.org/10.1016/j.gr.2011.02.009 Google Scholar
  72. Wan, Y. S., Dong, C. Y., Liu, D. Y., et al., 2012. Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 222/223: 265–289.  https://doi.org/10.1016/j.precamres.2011.05.001 Google Scholar
  73. Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685–700 (in Chinese with English Abstract)Google Scholar
  74. Wang, A. D., Liu, Y. C., 2012. Neoarchean (2.5–2.8 Ga) Crustal Growth of the North China Craton Revealed by Zircon Hf Isotope: A Synthesis. Geoscience Frontiers, 3(2): 147–173.  https://doi.org/10.1016/j.gsf.2011.10.006 Google Scholar
  75. Wang, G. D., Wang, H. Y. C., Chen, H. X., et al., 2017. Geochronology and Geochemistry of the TTG and Potassic Granite of the Taihua Complex, Mts. Huashan: Implications for Crustal Evolution of the Southern North China Craton. Precambrian Research, 288. 72–90.  https://doi.org/10.1016/j.precamres.2016.11.006 Google Scholar
  76. Wang, Z. J., Shen, Q. H., Wan, Y. S., 2004. SHRIMP U-Pb Zircon Geochronology of the Shipaihe “Metadiorite Mass” from Dengfeng County, Henan Province. Acta Geoscientica Sinica, 25(3): 295–298 (in Chinese with English Abstract)Google Scholar
  77. Watkins, J. M., Clemens, J. D., Treloar, P. J., 2007. Archaean TTGs as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6–1.2 GPa. Contributions to Mineralogy and Petrology, 154(1): 91–110.  https://doi.org/10.1007/s00410-007-0181-0 Google Scholar
  78. Windley, B. F., 1995. The Evolving Continents (Third Edition). John Wiley and Sons, Chichester. 377–385, 459–462Google Scholar
  79. Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523–545.  https://doi.org/10.1016/j.jseaes.2003.10.011 Google Scholar
  80. Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126.  https://doi.org/10.1016/j.chemgeo.2006.05.003 Google Scholar
  81. Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217–1238 (in Chinese with English Abstract)Google Scholar
  82. Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201–1219.  https://doi.org/10.1007/s11430-016-5139-1 Google Scholar
  83. Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30–42.  https://doi.org/10.1007/s12583-017-0805-x Google Scholar
  84. Yang, Y. H., Zhang, H. F., Chu, Z. Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2/3): 120–126.  https://doi.org/10.1016/j.ijms.2009.12.011 Google Scholar
  85. Yu, S. Q., Liu, S. W., Tian, W., et al., 2006. SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province. Acta Geologica Sinica—English Edition, 80(6): 912–924.  https://doi.org/10.1111/j.1755-6724.2006.tb00312.x Google Scholar
  86. Zeh, A., Gerdes, A., Barton, J. M. Jr., 2009. Archean Accretion and Crustal Evolution of the Kalahari Craton—The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology, 50(5): 933–966.  https://doi.org/10.1093/petrology/egp027 Google Scholar
  87. Zen, E. A., 1986. Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. Journal of Petrology, 27(5): 1095–1117.  https://doi.org/10.1093/petrology/27.5.1095 Google Scholar
  88. Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and Its Breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China Series D: Earth Sciences, 43(Suppl. 1): 219–232.  https://doi.org/10.1007/bf02911947 Google Scholar
  89. Zhai, M. G., Guo, J. H., Liu, W. J., 2005. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 24(5): 547–561.  https://doi.org/10.1016/j.jseaes.2004.01.018 Google Scholar
  90. Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25.  https://doi.org/10.1016/j.gr.2011.02.005 Google Scholar
  91. Zhai, M. G., 2014. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 5(4): 457–469.  https://doi.org/10.1016/j.gsf.2014.01.003 Google Scholar
  92. Zhang, H., Sun, F. Y., 2012. U-Pb Geochronology and Hf Isotope Geochemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications. Journal of Jilin University (Earth Science Edition), 42(3): 733–746 (in Chinese with English Abstract)Google Scholar
  93. Zhang, J., Zhang, H. F., Lu, X. X., 2013. Zircon U-Pb Age and Lu-Hf Isotope Constraints on Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton. Precambrian Research, 226. 1–20.  https://doi.org/10.1016/j.precamres.2012.11.015 Google Scholar
  94. Zhang, R. Y., Zhang, C. L., Sun, Y., 2013. Crustal Reworking in the North China Craton at ≈2.5 Ga: Evidence from Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the TTG Gneisses in the Zhongtiao Mountain. Acta Petrologica Sinica, 29(7): 2265–2280 (in Chinese with English Abstract)Google Scholar
  95. Zhang, R. Y., 2015. The Composition and Evolution of the Sushui Complex in the Zhongtiao Mountains, the South of North China Craton: [Dissertation]. Northwest University, Xi’an. 29–140 (in Chinese with English Abstract)Google Scholar
  96. Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8): 706–721.  https://doi.org/10.1080/00206819809465233 Google Scholar
  97. Zhao, G. C., Sun, M., Wilde, S. A., 2002. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China (Earth Sciences), 32(7): 538–549 (in Chinese)Google Scholar
  98. Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202.  https://doi.org/10.1016/j.precamres.2004.10.002 Google Scholar
  99. Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240.  https://doi.org/10.1016/j.gr.2012.08.016 Google Scholar
  100. Zhao, J. H., Zhou, M. F., 2009. Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China. The Journal of Geology, 117(1): 54–70.  https://doi.org/10.1086/593321 Google Scholar
  101. Zhao, J. H., Zhou, M. F., Zheng, J. P., 2013a. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contributions to Mineralogy and Petrology, 166(5): 1505–1519.  https://doi.org/10.1007/s00410-013-0940-z Google Scholar
  102. Zhao, J. H., Zhou, M. F., Zheng, J. P., et al., 2013b. Neoproterozoic Tonalite and Trondhjemite in the Huangling Complex, South China: Crustal Growth and Reworking in a Continental Arc Environment. American Journal of Science, 313(6): 540–583.  https://doi.org/10.2475/06.2013.02 Google Scholar
  103. Zhao, Y., Li, N. B., Jiang, Y. H., et al., 2017. Petrogenesis of the Late Archean (≈2.5 Ga) Na- and K-Rich Granitoids in the Zhongtiao-Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton. Precambrian Research, 303. 590–603.  https://doi.org/10.1016/j.precamres.2017.07.037 Google Scholar
  104. Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., et al., 2004. 3.6 Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 32(3): 229–232.  https://doi.org/10.1130/g20133.1 Google Scholar
  105. Zhou, Y. Y., Zhao, T. P., Zhai, M. G., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255. 514–537.  https://doi.org/10.1016/j.precamres.2014.06.023 Google Scholar
  106. Zhou, Y. Y., Zhao, T. P., Sun, Q. Y., et al., 2017. Petrogenesis of the Neoarchean Diorite-Granite Association in the Wangwushan Area, Southern North China Craton: Implications for Continental Crust Evolution. Precambrian Research.  https://doi.org/10.1016/j.precamres.2017.12.040 Google Scholar
  107. Zhou, Y. Y., Zhao, T. P., Sun, Q. Y., et al., 2018. Geochronological and Geochemical Constraints on the Petrogenesis of the 2.6–2.5 Ga Amphibolites, Low- and High-Al TTGs in the Wangwushan Area, Southern North China Craton: Implications for the Neoarchean Crustal Evolution. Precambrian Research, 307. 93–114.  https://doi.org/10.1016/j.precamres.2018.01.013 Google Scholar
  108. Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D: Earth Sciences, 52(9): 1223–1239.  https://doi.org/10.1007/s11430-009-0132-x Google Scholar
  109. Zhu, X. Y., Zhai, M. G., Chen, F. K., et al., 2013. ≈2.7-Ga Crustal Growth in the North China Craton: Evidence from Zircon U-Pb Ages and Hf Isotopes of the Sushui Complex in the Zhongtiao Terrane. Journal of Geology, 121(3): 239–254.  https://doi.org/10.1086/669977 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.No. 1 Geology and Mineral Resources Survey Institute of Henan Geology and Mineral Exploration and Development BureauLuoyangChina
  3. 3.Henan Institute of Geological SurveyZhengzhouChina

Personalised recommendations