Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 510–524 | Cite as

Metamorphism and Oceanic Crust Exhumation—Constrained by the Jilang Eclogite and Meta-Quartzite from the Sumdo (U)HP Metamorphic Belt

  • Yang Li
  • Cong ZhangEmail author
  • Xiaoyu Liu
  • Tingting Shen
  • Tian Qiu
  • Jingsui Yang
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle

Abstract

The Sumdo eclogite-bearing (U)HP metamorphic belt extends over 100 km across the middle part of the Lhasa terrane in southern Tibet, which forms a Permian-Triassic oceanic subduction zone between the south and the north Lhasa sub-terranes, leading to the reinterpretation of the tectonic evolution of the Lhasa terrane in the Tibetan-Himalayan orogeny. Previous studies show that there are significant differences in temperature and pressure conditions of the eclogites in four areas, e.g., Sumdo, Xindaduo, Bailang and Jilang areas. Studying the peak metamorphic P-T conditions and path of eclogite in the Sumdo belt is of great significance to reveal the subduction and exhumation mechanism of Paleo-Tethys Ocean in the Lhasa terrane. In this contribution, eclogite in the Jilang area of the Sumdo belt is chosen as an example to study its metamorphic evolution. The mineral assemblage of the eclogite is garnet, omphacite, phengite, hornblende, epidote, quartz and minor biotite. Garnet has a “dirty” core with abundant inclusions such as epidote, amphibole, plagioclase and a “clear” rim with few inclusions of omphacite and phengite. From the core to the rim, pyrope content in garnet increases while grossular content decreases, showing typical growth zoning. The rim of garnet is wrapped by the pargasite+plagioclase corona, showing amphibolite facies overprint during retrogression. Three stages of metamorphism are inferred as (1) prograde stage, represented by the core of garnet and mineral inclusions therein; (2) peak stage, represented by the garnet rim, omphacite, lawsonite, phengite, and quartz; (3) retrograde stage characterized by decomposition of lawsonite to zoisite, followed by symplectite of omphacite and corona rimmed garnet. A P-T pseudosection contoured with isopleths of grossular and pyrope contents in garnet is used to constrain the near peak P-T condition at 2.85 GPa, 575 °C. In general, the Jilang eclogite shows a clockwise P-T path with a near isothermal decompression process during exhumation. Combined with the age peaks of 583, 911, and 1 134 Ma from the detrital zircons of the country metaquartzite, a continental margin material involving exhumation process at shallow depth after the subduction channel exhumation is inferred for the Jilang eclogite and may further indicate that the subduction direction of the Sumdo eclogite belt is from north to south.

Keywords

Sumdo UHP belt eclogite metamorphic evolution oceanic crust exhumation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Prof. Chunjing Wei and two anonymous reviewers are thanked for their comprehensive, constructive suggestions to improve the content of the manuscript. We thank Dr. Lingmin Zhang from Tongji University for the help in electron microprobe analysis. This research was financially supported by the National Natural Science Foundation of China (Nos. 41572051, 41630207, 41872067 and 41703053), and Chinese Academy of Geological Sciences (No. YYWF201702). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0894-9.

References Cited

  1. Agard, P., Yamato, P., Jolivet, L., et al., 2009. Exhumation of Oceanic Blueschists and Eclogites in Subduction Zones: Timing and Mechanisms. Earth-Science Reviews, 921/2): 53–79.  https://doi.org/10.1016/j.earscirev.2008.11.002 CrossRefGoogle Scholar
  2. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79.  https://doi.org/10.1016/s0009-2541(02)00195-x CrossRefGoogle Scholar
  3. Cao, D. D., Cheng, H., Zhang, L. M., et al., 2017. Post-Peak Metamorphic Evolution of the Sumdo Eclogite from the Lhasa Terrane of Southeast Tibet. Journal of Asian Earth Sciences, 143: 156–170.  https://doi.org/10.1016/j.jseaes.2017.04.020 CrossRefGoogle Scholar
  4. Carswell, D. A., 1990. Eclogite Facies Rocks. Blackie, New York. 396CrossRefGoogle Scholar
  5. Carswell, D. A., Compagnoni, R., 2003. Introduction with Review of the Definition, Distribution and Geotectonic Significance of Ultrahigh Pressure Metamorphism. In: Carswell, D. A., Compagnoni, R., eds., EMU Notes in Mineralogy, vol. 5, Eötvös Lorànd University Press, Budapest. 3–9Google Scholar
  6. Chen, S. Y., Yang, J. S., Li, Y., et al., 2009. Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau: An Ophiolite Unit. Journal of Earth Science, 20(2): 332–347.  https://doi.org/10.1007/s12583-009-0028-x CrossRefGoogle Scholar
  7. Chen, Y., Ye, K., Wu, T. F., et al., 2013. Exhumation of Oceanic Eclogites: Thermodynamic Constraints on Pressure, Temperature, Bulk Composition and Density. Journal of Metamorphic Geology, 31(5): 549–570.  https://doi.org/10.1111/jmg.12033 CrossRefGoogle Scholar
  8. Cheng, H., Zhang, C., Vervoort, J. D., et al., 2012. Zircon U-Pb and Garnet Lu-Hf Geochronology of Eclogites from the Lhasa Block, Tibet. Lithos, 155: 341–359.  https://doi.org/10.1016/j.lithos.2012.09.011 CrossRefGoogle Scholar
  9. Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4): 1482–1499.  https://doi.org/10.1016/j.gr.2014.09.017 CrossRefGoogle Scholar
  10. Coggon, R., Holland, T. J. B., 2002. Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers. Journal of Metamorphic Geology, 20(7): 683–696.  https://doi.org/10.1046/j.1525-1314.2002.00395.x CrossRefGoogle Scholar
  11. Coleman, R. G., Wang, X., 1995. Ultrahigh-Pressure Metamorphism. Cambridge University Press, New York. 528CrossRefGoogle Scholar
  12. Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102.  https://doi.org/10.1016/0012-821x(94)00237-s CrossRefGoogle Scholar
  13. de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 51(10): 2639–2652.  https://doi.org/10.1016/0016-7037(87)90145-1 CrossRefGoogle Scholar
  14. de Capitani, C., Petrakakis, K., 2010. The Computation of Equilibrium Assemblage Diagrams with Theriak/Domino Software. American Mineralogist, 95(7): 1006–1016.  https://doi.org/10.2138/am.2010.3354 CrossRefGoogle Scholar
  15. Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeOMgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656.  https://doi.org/10.1111/j.1525-1314.2007.00720.x CrossRefGoogle Scholar
  16. Ellis, D. J., Green, D. H., 1979. An Experimental Study of the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria. Contributions to Mineralogy and Petrology, 71(1): 13–22.  https://doi.org/10.1007/bf00371878 CrossRefGoogle Scholar
  17. Ernst, W. G., 1988. Tectonic History of Subduction Zones Inferred from Retrograde Blueschist P-T Paths. Geology, 16(12): 1081–1084.  https://doi.org/10.1130/0091-7613(1988)016<1081:thoszi>2.3.co;2 CrossRefGoogle Scholar
  18. Ernst, W. G., Liou, J. G., 1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology, 23(4): 353–356.  https://doi.org/10.1130/0091-7613(1995)023<0353:cptsot>2.3.co;2 CrossRefGoogle Scholar
  19. Ernst, W. G., 2001. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 253–275.  https://doi.org/10.1016/s0031-9201(01)00231-x CrossRefGoogle Scholar
  20. Green, E., Holland, T., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189.  https://doi.org/10.2138/am.2007.2401 CrossRefGoogle Scholar
  21. Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Lallemand, S., Funiciello, F., eds., Subduction Zone Geodynamics. Springer, Berlin, Heidelberg. 175–205CrossRefGoogle Scholar
  22. Guynn, J. H., Kapp, P., Pullen, A., et al., 2006. Tibetan Basement Rocks near Amdo Reveal “Missing” Mesozoic Tectonism along the Bangong Suture, Central Tibet. Geology, 34(6): 505–508.  https://doi.org/10.1130/g22453.1 CrossRefGoogle Scholar
  23. Hacker, B. R., Gerya, T. V., 2013. Paradigms, New and Old, for Ultrahigh-Pressure Tectonism. Tectonophysics, 603: 79–88.  https://doi.org/10.1016/j.tecto.2013.05.026 CrossRefGoogle Scholar
  24. Holland, T. J. B., Baker, J., Powell, R., 1998. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395–406.  https://doi.org/10.1127/ejm/10/3/0395 CrossRefGoogle Scholar
  25. Holland, T., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501.  https://doi.org/10.1007/s00410-003-0464-z CrossRefGoogle Scholar
  26. Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343.  https://doi.org/10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  27. Huang, J., Tian, Z. L., Zhang, C., et al., 2015. Metamorphic Evolution of Sumdo Eclogite in Lhasa Block of the Tibetan Plateau: Phase Equilibrium in NCKMnFMASHTO System. Geology in China, 42(5): 1559–1571 (in Chinese with English Abstract)Google Scholar
  28. Krogh, E. J., 1988. The Garnet-Clinopyroxene Fe-Mg Geothermometer: A Reinterpretation of Existing Experimental Data. Contributions to Mineralogy and Petrology, 99(1): 44–48.  https://doi.org/10.1007/bf00399364 CrossRefGoogle Scholar
  29. Krogh Ravna, E., 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211–219.  https://doi.org/10.1046/j.1525-1314.2000.00247.x CrossRefGoogle Scholar
  30. Krogh Ravna, E., Terry, M. P., 2004. Geothermobarometry of UHP and HP Eclogites and Schists—An Evaluation of Equilibria among Garnet-Clinopyroxene-Kyanite-Phengite-Coesite/Quartz. Journal of Metamorphic Geology, 22(6): 579–592.  https://doi.org/10.1111/j.1525-1314.2004.00534.x CrossRefGoogle Scholar
  31. Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphic Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12): 3753–3765 (in Chinese with English Abstract)Google Scholar
  32. Li, J. L., Klemd, R., Gao, J., et al., 2016. Poly-Cyclic Metamorphic Evolution of Eclogite: Evidence for Multistage Buria-Exhumation Cycling in a Subduction Channel. Journal of Petrology, 57(1): 119–146.  https://doi.org/10.1093/petrology/egw002 CrossRefGoogle Scholar
  33. Liou, J. G., Zhang, R. Y., Ernst, W. G., 2007. Very High-Pressure Orogenic Garnet Peridotites. Proceedings of the National Academy of Sciences, 104(22): 9116–9121.  https://doi.org/10.1073/pnas.0607300104 CrossRefGoogle Scholar
  34. Liu, Y., Liu, H. F., Theye, T., et al., 2009. Evidence for Oceanic Subduction at the NE Gondwana Margin during Permo-Triassic Times. Terra Nova, 21(3): 195–202.  https://doi.org/10.1111/j.1365-3121.2009.00874.x CrossRefGoogle Scholar
  35. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 CrossRefGoogle Scholar
  36. Ludwig, K. R., 2003. User’s Manual for Isoplot/Ex, Version 300: A Geochronological Toolkit for Microsoft Excell. Berkeley Geochronology Center Special Publication, Berkeley. 70Google Scholar
  37. Lü, Z., Zhang, L. F., Du, J. X., et al., 2008. Coesite Inclusions in Garnet from Eclogitic Rocks in Western Tianshan, Northwest China: Convincing Proof of UHP Metamorphism. American Mineralogist, 93(11/12): 1845–1850.  https://doi.org/10.2138/am.2008.2800 CrossRefGoogle Scholar
  38. Maruyama, S., Liou, J. G., Terabayashi, M., 1996. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 38(6): 485–594.  https://doi.org/10.1080/00206819709465347 CrossRefGoogle Scholar
  39. Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49–67.  https://doi.org/10.1016/j.chemgeo.2008.02.003 CrossRefGoogle Scholar
  40. Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3–14.  https://doi.org/10.1016/j.jseaes.2011.12.018 CrossRefGoogle Scholar
  41. Powell, R., 1985. Regression Diagnostics and Robust Regression in Geothermometer/Geobarometer Calibration: The Garnet-Clinopyroxene Geothermometer Revisited. Journal of Metamorphic Geology, 3(3): 231–243.  https://doi.org/10.1111/j.1525-1314.1985.tb00319.x CrossRefGoogle Scholar
  42. Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2): 155–179.  https://doi.org/10.1111/j.1525-1314.2007.00756.x CrossRefGoogle Scholar
  43. Reinecke, T., 1991. Very-High-Pressure Metamorphism and Uplift of Coesite-Bearing Metasediments from the Zermatt-Saas Zone, Western Alps. European Journal of Mineralogy, 3(1): 7–18.  https://doi.org/10.1127/ejm/3/1/0007 CrossRefGoogle Scholar
  44. Shen, T. T., Zhang, C., Tian, Z. L., et al., 2018. Petrological Studies of Jilang Eclogite in the Lhasa Terrane and Its Constraint on the Subduction and Exhumation Processes of the Paleo-Tethys Oceanic Crust. Petrologica et Mineralogica Sinica, 37(6): 917–932 (in Chinese with English Abstract)Google Scholar
  45. Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84.  https://doi.org/10.1016/j.earscirev.2013.11.010 CrossRefGoogle Scholar
  46. Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research, 91(B10): 10229.  https://doi.org/10.1029/jb091ib10p10229 Google Scholar
  47. van Roermund, H. L. M., Drury, M. R., 1998. Ultra-High Pressure (P> 6 GPa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from >85 km Depth. Terra Nova, 10(6): 295–301.  https://doi.org/10.1046/j.1365-3121.1998.00213.x CrossRefGoogle Scholar
  48. Wang, Q. C., Cong, B. L., 1996. Tectonic Implication of UHP Rocks from the Dabie Mountains. Science in China Series D: Earth Sciences, 39: 311–318Google Scholar
  49. Wei, C. J., Powell, R., 2004. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O) with Application to Natural Rocks. Journal of Petrology, 45: 183–202CrossRefGoogle Scholar
  50. Wei, C. J., Su, X. L., Lou, Y. X., et al., 2009. A New Interpretation of the Conventional Thermobarometry in Eclogite: Evidence from the Calculated P-T Pseudosections. Acta Petrologica Sinica, 25(9): 2078–2088 (in Chinese with English Abstract)Google Scholar
  51. Wei, C. J., Clarke, G. L., 2011. Calculated Phase Equilibria for MORB Compositions: A Reappraisal of the Metamorphic Evolution of Lawsonite Eclogite. Journal of Metamorphic Geology, 29(9): 939–952.  https://doi.org/10.1111/j.1525-1314.2011.00948.x CrossRefGoogle Scholar
  52. Yamato, P., Agard, P., Burov, E., et al., 2007. Burial and Exhumation in a Subduction Wedge: Mutual Constraints from Thermomechanical Modeling and Natural P-T-t Data (Schistes Lustrés, Western Alps). Journal of Geophysical Research, 112(B7): B07410.  https://doi.org/10.1029/2006jb004441 CrossRefGoogle Scholar
  53. Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China: Discovery of Eclogite in the Lhasa Terrane, Tibet. Acta Geologica Sinica, 80(12): 1787–1792 (in Chinese with English Abstract)Google Scholar
  54. Yang, J. S., Xu, Z. Q., Li, Z. L., et al., 2009. Discovery of an Eclogite Belt in the Lhasa Block, Tibet: A New Border for Paleo-Tethys?. Journal of Asian Earth Sciences, 34(1): 76–89.  https://doi.org/10.1016/j.jseaes.2008.04.001 CrossRefGoogle Scholar
  55. Yang, X. L., Zhang, L. F., Zhao, Z. D., et al., 2014. Metamorphic Evolution of Glaucophane Eclogite from Sumdo, Lhasa Block of Tibetan Plateau: Phase Equilibria and Metamorphic P-T Path. Acta Petrologica Sinica, 30(5): 1505–1519 (in Chinese with English Abstract)Google Scholar
  56. Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734–736. https://doi.org/10.1038/35037566CrossRefGoogle Scholar
  57. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280.  https://doi.org/10.1146/annurev.earth.28.1.211 CrossRefGoogle Scholar
  58. Zhai, Q. G., Zhang, R. Y., Jahn, B. M., et al., 2011. Triassic Eclogites from Central Qiangtang, Northern Tibet, China: Petrology, Geochronology and Metamorphic P-T Path. Lithos, 125(1/2): 173–189.  https://doi.org/10.1016/j.lithos.2011.02.004 CrossRefGoogle Scholar
  59. Zhang, C., Bader, T., van Roermund, H. L. M., et al., 2019a. The Metamorphic Evolution and Tectonic Significance of the Sumdo HP-UHP Metamorphic Terrane, Central-South Lhasa Block, Tibet. Geological Society, London, Special Publications.  https://doi.org/10.1144/sp474.4 Google Scholar
  60. Zhang, C., Bader, T., Zhang, L. M., et al., 2019b. Metamorphic Evolution and Age Constraints of the Garnet-Bearing Mica Schist from the Xindaduo Area of the Sumdo (U)HP Metamorphic Belt, Tibet. Geological Magazine.  https://doi.org/10.1017/s001675681800033x Google Scholar
  61. Zhang, D. D., Zhang, L. F., Zhao, Z. D., 2011. A Study of Metamorphism of Sumdo Eclogite in Tibet, China. Earth Science Frontiers, 18(2): 116–126 (in Chinese with English Abstract)Google Scholar
  62. Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939–960.  https://doi.org/10.1016/j.gr.2011.11.004 CrossRefGoogle Scholar
  63. Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–1025.  https://doi.org/10.1007/s12583-018-0852-y CrossRefGoogle Scholar
  64. Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Science, 58(7): 1045–1069 (in Chinese with English Abstract)CrossRefGoogle Scholar
  65. Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1/2): 105–161.  https://doi.org/10.1016/s0012-8252(02)00133-2 CrossRefGoogle Scholar
  66. Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Zircon U-Pb Dating and in-situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet: Implications for Permian Collisional Orogeny and Paleogeography. Tectonophysics, 469(1/2/3/4): 48–60.  https://doi.org/10.1016/j.tecto.2009.01.017 CrossRefGoogle Scholar
  67. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255.  https://doi.org/10.1016/j.epsl.2010.11.005 CrossRefGoogle Scholar
  68. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290–308.  https://doi.org/10.1016/j.chemgeo.2011.12.024 CrossRefGoogle Scholar
  69. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454.  https://doi.org/10.1016/j.gr.2012.02.002 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  3. 3.National Research Center for GeoanalysisBeijingChina

Personalised recommendations