Advertisement

Sapphirine-Bearing Pelitic Granulite from Ailaoshan Orogen, West Yunnan, China: Metamorphic Conditions and Tectonic Setting

  • Cheng Wei
  • Yuhao Zhao
  • Luhua Zhu
  • Xuexiang QiEmail author
  • Zhihui Cai
  • Xufeng Liu
  • Guangfei Ma
Article
  • 12 Downloads

Abstract

To reveal the petrological characteristics, metamorphic evolution history and tectonic setting of the pelitic granulites from Ailaoshan Orogen, West Yunnan, China, a comprehensive study in mineral chemistry, petrogeochemistry and geochronology studies is presented in this paper. Two metamorphic stages of the granulites can be established: (1) the peak metamorphism recorded by the mineral assemblage of garnet, kyanite, K-feldspar and rutile, and the initial retrograde metamorphism shown by the mineral assemblage of garnet, sillimanite, sapphirine, spinel, K-feldspar, plagioclase and biotite; (2) the superimposed metamorphism recorded by the mineral assemblage of biotite, muscovite, plagioclase, quartz and ilmenite. Zircon LA-ICP-MS U-Pb dating indicates that the protolith of the granulite was deposited after 337 Ma. The initial retrograde metamorphism occurred at P-T conditions of 8.6–12 kbar at 850–920 °C estimated by mineral assemblages, the low pressure limit of kyanite stability and GBPQ geothermobarometer in Indosinian (about 235 Ma), and the late superimposed metamorphism occurred at the P-T condition of 3.5–3.9 kbar at 572–576 °C estimated by GBPQ geothermobarometer since 33 Ma. The first stage was related to the amalgamation of the South China and Indochina blocks during the Triassic, and the second stage was possibly related with the large scale sinistral slip-shearing since the Oligocene. It is inferred that the upper continental crust was subducted/underthrusted to the lower continental crust (deeper than 30 km) and underwent granulite-facies metamorphism and then quickly exhumed to the middle-upper crust (10–12 km) and initial retrograde metamorphism occurred due to the collision of the Indochina and South China blocks during Indosinian, which was followed by superimposition of the second stage of metamorphism since the Oligocene.

Key words

high-pressure pelitic granulite sapphirine zircon LA-ICP-MS U-Pb dating metamorphic rocks Ailaoshan Orogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank two anonymous reviewers for their critical and constructive comments. Heartfelt thanks also go to Profs. Zeming Zhang, Jianxin Zhang, and Xiwen Zhou for their discussion and help. Dr. Hua Xiang provided valuable suggestions for the original manuscript. This study was supported by the National Natural Science Foundation of China (Nos. 91755101, 41272219), the Chinese Ministry of Science and Technology (No. Sinoprobe-05-03), and the China Geological Survey (No. DD20160022-07). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0893-x.

References Cited

  1. Aït-Djafer, S., Adjerid, Z., Badani, A., et al., 2009. Spinel-Quartz High Temperature Paragenesis in Al-Fe Granulites from the Ihouhaouene Area (NW Hoggar, Algeria). Journal of African Earth Sciences, 55(1/2): 79–91. https://doi.org/10.1016/j.jafrearsci.2009.02.004 Google Scholar
  2. Anderson, J. R., Payne, J. L., Kelsey, D. E., et al., 2012. High-Pressure Granulites at the Dawn of the Proterozoic. Geology, 40(5): 431–4. https://doi.org/10.1130/g32854.1 Google Scholar
  3. Bertrand, P., Ellis, D. J., Green, D. H., 1991. The Stability of Sapphirine-Quartz and Hypersthene-Sillimanite-Quartz Assemblages: An Experimental Investigation in the System FeO-MgO-Al2O3-SiO2 under H2O and CO2 Conditions. Contributions to Mineralogy and Petrology, 108(1/2): 55–71. https://doi.org/10.1007/bf00307326 Google Scholar
  4. Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–4. https://doi.org/10.2747/0020-6814.49.3.193 Google Scholar
  5. Burchfiel, B. C., Wang, E., 2003. Northwest-Trending, Middle Cenozoic, Left-Lateral Faults in Southern Yunnan, China, and Their Tectonic Significance. Journal of Structural Geology, 25(5): 781–4. https://doi.org/10.1016/s0191-8141(02)00065-2 Google Scholar
  6. Bureau of Geology and Resources of Yunnan (BGMRY), 1990. Regional Geology of Yunnan. Geological Publishing House, Beijing. 1–290 (in Chinese)Google Scholar
  7. Cao, S. Y., Liu, J. L., Leiss, L., et al., 2011a. Initiation of Left-Lateral Deformation along the Ailao Shan-Red River Shear Zone: New Microstructural, Textural, and Geochronological Constraints from the Diancang Shan Metamorphic Massif, SW Yunnan, China. International Geology Review, 54(3): 348–4. https://doi.org/10.1080/00206814.2010.543789 Google Scholar
  8. Cao, S. Y., Neubauer, F., Liu, J. L., et al., 2011b. Exhumation of the Diancang Shan Metamorphic Complex along the Ailao Shan-Red River Belt, Southwestern Yunnan, China: Evidence from 40Ar/39Ar Thermochronology. Journal of Asian Earth Sciences, 42(3): 525–4. https://doi.org/10.1016/j.jseaes.2011.04.017 Google Scholar
  9. Dong, Y. F., Zheng, C. Q., Zhou, X. W., et al., 2018. Metamorphism and Its Tectonic Implications of Early Mesozoic Pelitic Granulites from Badu Complex of Southwestern Zhejiang Province, South China. Earth Science, 43(1): 259–277 (in Chinese with English Abstract)Google Scholar
  10. Dong, Y. P., Zhu, B. Q., Chang, X. Y., et al., 2000. Geochemistry of the Two-Type Volcanic Rocks from Ailaoshan Suture Zone and Their Tectonic Implication. Geochimica, 1: 1–13 (in Chinese with English Abstract)Google Scholar
  11. Gilotti, J. A., Elvevold, S., 2002. Extensional Exhumation of a High-Pressure Granulite Terrane in Payer Land, Greenland Caledonides: Structural, Petrologic, and Geochronologic Evidence from Metapelites. Canadian Journal of Earth Sciences, 39(8): 1169–4. https://doi.org/10.1139/e02-019 Google Scholar
  12. Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140–4. https://doi.org/10.2465/jmps.99.140 Google Scholar
  13. Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125–4. https://doi.org/10.1111/j.1525-1314.2008.00765.x Google Scholar
  14. Hensen, B. J., Green, D. H., 1972. Experimental Study of the Stability of Cordierite and Garnet in Pelitic Compositions at High Pressures and Temperatures. Contributions to Mineralogy and Petrology, 35(4): 331–4. https://doi.org/10.1007/bf00371314 Google Scholar
  15. Hiroi, Y., Ogo, Y., Namba, K., 1994. Evidence for Prograde Metamorphic Evolution of Sri Lankan Pelitic Granulites, and Implications for the Development of Continental Crust. Precambrian Research, 66(1/2/3/4): 245–263. https://doi.org/10.1016/0301-9268(94)90053-1 Google Scholar
  16. Hiroi, Y., Shiraishi, K., Yanai, K., et al., 1983. Aluminum Silicates in the Prince Olav and Soya Coasts, East Antarctica. Memoirs of National Institute of Polar Research, Special Issue, 28: 115–131Google Scholar
  17. Holdaway, M. J., 2000. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 85(7/8): 881–892. https://doi.org/10.2138/am-2000-0701 Google Scholar
  18. Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–4. https://doi.org/10.1039/c2ja30078h Google Scholar
  19. Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (I): Geochemistry of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3/4): 748–766. https://doi.org/10.1016/j.lithos.2009.04.004 Google Scholar
  20. Jian, P., Liu, D. Y., Sun, X. M., 2008. SHRIMP Dating of the Permo-Carboniferous Jinshajiang Ophiolite, Southwestern China: Geochronological Constraints for the Evolution of Paleo-Tethys. Journal of Asian Earth Sciences, 32(5/6): 371–384. https://doi.org/10.1016/j.jseaes.2007.11.006 Google Scholar
  21. Jian, P., Wang, X. F., He, L. Q., et al., 1998. U-Pb Zircon Dating of the Shuanggou Ophiolite from Xingping County, Yunnan Province. Acta Petrologica Sinica, 14(2): 207–211 (in Chinese with English Abstract)Google Scholar
  22. Jöns, N., Schenk, V., 2011. The Ultrahigh Temperature Granulites of Southern Madagascar in a Polymetamorphic Context: Implications for the Amalgamation of the Gondwana Supercontinent. European Journal of Mineralogy, 23(2): 127–4. https://doi.org/10.1127/0935-1221/2011/0023-2087 Google Scholar
  23. Koziol, A. M., Newton, R. C., 1988. Redetermination of the Anorthite Breakdown Reaction and Improvement of the Plagioclase-Garnet-Al2SiO5-Quartz Geobarometer. American Mineralogist, 73(3/4): 216–223. https://doi.org/10.1016/0370-2693(68)90152-4 Google Scholar
  24. Leloup, P. H., Kienast, J.-R., 1993. High-Temperature Metamorphism in a Major Strike-Slip Shear Zone: The Ailao Shan-Red River, People’s Republic of China. Earth and Planetary Science Letters, 118(1/2/3/4): 213–234. https://doi.org/10.1016/0012-821x(93)90169-a Google Scholar
  25. Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1/2/3/4): 3–84. https://doi.org/10.1016/0040-1951(95)00070-4 Google Scholar
  26. Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif): Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1/2/3/4): 87–118. https://doi.org/10.1016/j.tecto.2004.07.030 Google Scholar
  27. Lepvrier, C., Maluski, H., Van Vuong, N., et al., 1997. Indosinian NW-Trending Shear Zones within the Truong Son Belt (Vietnam) 40Ar-39Ar Triassic Ages and Cretaceous to Cenozoic Overprints. Tectonophysics, 283(1/2/3/4): 105–127. https://doi.org/10.1016/s0040-1951(97)00151-0 Google Scholar
  28. Liang, H. Y., Campbell, I. H., Allen, C. M., et al., 2007. The Age of the Potassic Alkaline Igneous Rocks along the Ailao Shan-Red River Shear Zone: Implications for the Onset Age of Left-Lateral Shearing. The Journal of Geology, 115: 231–3. https://doi.org/10.1086/510801 Google Scholar
  29. Liu, F. T., Liu, J. H., Zhong, D. L., et al., 2000. The Subducted Slab of Yangtze Continental Block beneath the Tethyan Orogen in Western Yunnan. Chinese Science Bulletin, 45(5): 466–4. https://doi.org/10.1007/bf02884953 Google Scholar
  30. Liu, J. L., Cao, S. Y., Zai, Y. F., et al., 2007. Rotation of Crustal Blocks as an Explanation of Oligo-Miocene Extension in Southeastern Tibet—Evidenced by the Diancangshan and nearby Metamorphic Core Complexes. Earth Science Frontiers, 14(4): 40–48 (in Chinese with English Abstract)Google Scholar
  31. Liu, J. L., Chen, X. Y., Wu, W. B., et al., 2015. New Tectono-Geochronological Constraints on Timing of Shearing along the Ailao Shan-Red River Shear Zone: Implications for Genesis of Ailao Shan Gold Mineralization. Journal of Asian Earth Sciences, 103: 70–3. https://doi.org/10.1016/j.jseaes.2014.11.006 Google Scholar
  32. Liu, J. L., Tang, Y., Tran, M. D., et al., 2012. The Nature of the Ailao Shan-Red River (ASRR) Shear Zone: Constraints from Structural, Microstructural and Fabric Analyses of Metamorphic Rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi Massifs. Journal of Asian Earth Sciences, 47: 231–3. https://doi.org/10.1016/j.jseaes.2011.10.020 Google Scholar
  33. Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551–4. https://doi.org/10.1016/s1367-9120(02)00022-6 Google Scholar
  34. Mo, X. X., Lu, F. X., Shen, S. Y., 1993. Sanjiang Tethyan Volcanism and Related Mineralization. Geological Publishing House, Beijing. 178–235 (in Chinese with English Abstract)Google Scholar
  35. Morley, C. K., 2002. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 347(4): 189–4. https://doi.org/10.1016/s0040-1951(02)00061-6 Google Scholar
  36. Morley, C. K., 2007. Variations in Late Cenozoic-Recent Strike-Slip and Oblique-Extensional Geometries, within Indochina: The Influence of Pre-Existing Fabrics. Journal of Structural Geology, 29(1): 36–4. https://doi.org/10.1016/j.jsg.2006.07.003 Google Scholar
  37. Motoyoshi, Y., Ishikawa, M., 1997. Metamorphic and Structural Evolution of Granulites from Rundvagshetta, Lützow-Holm Bay, East Antarctica. In: Ricci, C. A., ed., The Antarctic Region: Geological Evolution and Processes. Terra Antarctica, Sienna. 65–72Google Scholar
  38. Motoyoshi, Y., Matsubara, S., Matsueda, H., 1989. P-T Evolution of the Granulite-Facies Rocks of the Lützow-Holm Bay Region, East Antarctica. Geological Society, London, Special Publications, 43(1): 325–4. https://doi.org/10.1144/gsl.sp.1989.043.01.26 Google Scholar
  39. Motoyoshi, Y., Matsubara, S., Matsueda, H., et al., 1985. Garnet-Sillimanite Gneisses from the Lützow-Holm Bay Region, East Antarctica. Memoirs of National Institute of Polar Research, Special Issue, 37: 82–94Google Scholar
  40. Moulas, E., Kostopoulos, D., Connolly, J. A. D., et al., 2013. P-T Estimates and Timing of the Sapphirine-Bearing Metamorphic Overprint in Kyanite Eclogites from Central Rhodope, Northern Greece. Petrology, 21(5): 507–4. https://doi.org/10.1134/s0869591113050032 Google Scholar
  41. Nakano, N., Osanai, Y., Minh, N. T., et al., 2008. Discovery of High-Pressure Granulite-Facies Metamorphism in Northern Vietnam: Constraints on the Permo-Triassic Indochinese Continental Collision Tectonics. Comptes Rendus Geoscience, 340(2/3): 127–138. https://doi.org/10.1016/j.crte.2007.10.013 Google Scholar
  42. Nakano, N., Osanai, Y., Owada, M., et al., 2004. Decompression Process of Mafic Granulite from Eclogite to Granulite Facies under Ultrahigh-Temperature Condition in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 99(4): 242–4. https://doi.org/10.2465/jmps.99.242 Google Scholar
  43. Nakano, N., Osanai, Y., Owada, M., et al., 2007. Geologic and Metamorphic Evolution of the Basement Complexes in the Kontum Massif, Central Vietnam. Gondwana Research, 12(4): 438–4. https://doi.org/10.1016/j.gr.2007.01.003 Google Scholar
  44. Nakano, N., Osanai, Y., Sajeev, K., et al., 2010. Triassic Eclogite from Northern Vietnam: Inferences and Geological Significance. Journal of Metamorphic Geology, 28(1): 59–4. https://doi.org/10.1111/j.1525-1314.2009.00853.x Google Scholar
  45. Nam, T. N., Sano, Y., Terada, K., et al., 2001. First SHRIMP U-Pb Zircon Dating of Granulites from the Kontum Massif (Vietnam) and Tectonothermal Implications. Journal of Asian Earth Sciences, 19(1/2): 77–84. https://doi.org/10.1016/s1367-9120(00)00015-8 Google Scholar
  46. Nam, T. N., Toriumi, M., Itaya, T., 1998. P-T-t Paths and Post-Metamorphic Exhumation of the Day Nui Con Voi Shear Zone in Vietnam. Tectonophysics, 290(3/4): 299–318. https://doi.org/10.1016/s0040-1951(98)00054-7 Google Scholar
  47. O’Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–4. https://doi.org/10.1046/j.1525-1314.2003.00420.x Google Scholar
  48. Ogo, Y., Hiroi, Y., Prame, K., et al., 1992. A New Insight of Possible Correlation between the Lützow-Holm Bay Granulites (East Antarctica) and Sri Lankan Granulites. Recent Progress in Antarctic Earth Science. Terra Scientific Publishing Company, Tokyo. 75–86Google Scholar
  49. Osanai, Y., Nakano, N., Owada, M., et al., 2004. Permo-Triassic Ultrahigh-Temperature Metamorphism in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 99(4): 225–4. https://doi.org/10.2465/jmps.99.225 Google Scholar
  50. Ouzegane, K., Boumaza, S., 1996. An Example of Ultrahigh-Temperature Metamorphism: Orthopyroxene-Sillimanite-Garnet, Sapphirine-Quartz and Spinel-Quartz Parageneses in Al-Mg Granulites from in Hihaou, in Ouzzal, Hoggar. Journal of Metamorphic Geology, 14(6): 693–4. https://doi.org/10.1111/j.1525-1314.1996.00049.x Google Scholar
  51. Owada, M., Osanai, Y., Nakano, N., et al., 2007. Crustal Anatexis and Formation of Two Types of Granitic Magmas in the Kontum Massif, Central Vietnam: Implications for Magma Processes in Collision Zones. Gondwana Research, 12(4): 428–4. https://doi.org/10.1016/j.gr.2006.11.001 Google Scholar
  52. Pidgeon, R. T., 1992. Recrystallisation of Oscillatory Zoned Zircon: Some Geochronological and Petrological Implications. Contributions to Mineralogy and Petrology, 110(4): 463–4. https://doi.org/10.1007/bf00344081 Google Scholar
  53. Qi, X. X., Li, H. Q., Li, T. F., et al., 2010. Zircon SHRIMP U-Pb Dating for Garnet-Rich Granite Veins in High-Pressure Granulites from the Namche Barwa Complex, Eastern Syntaxis of the Himalayas, and the Relationship with Exhumation. Acta Petrogica Sinica, 26(3): 975–984 (in Chinese with English Abstract)Google Scholar
  54. Qi, X. X., Santosh, M., Zhao, Y. H., et al., 2016. Mid-Neoproterozoic Ridge Subduction and Magmatic Evolution in the Northeastern Margin of the Indochina Block: Evidence from Geochronology and Geochemistry of Calc-Alkaline Plutons. Lithos, 248–251: 138–152. https://doi.org/10.1016/j.lithos.2015.12.028 Google Scholar
  55. Qi, X. X., Santosh, M., Zhu, L. H., et al., 2014. Mid-Neoproterozoic Arc Magmatism in the Northeastern Margin of the Indochina Block, SW China: Geochronological and Petrogenetic Constraints and Implications for Gondwana Assembly. Precambrian Research, 245: 207–3. https://doi.org/10.1016/j.precamres.2014.02.008 Google Scholar
  56. Qi, X. X., Zeng, L. S., Zhu, L. H., et al., 2012. Zircon U-Pb and Lu-Hf Isotopic Systematics of the Daping Plutonic Rocks: Implications for the Neoproterozoic Tectonic Evolution of the Northeastern Margin of the Indochina Block, Southwest China. Gondwana Research, 21(1): 180–4. https://doi.org/10.1016/j.gr.2011.06.004 Google Scholar
  57. Sano, Y., Terada, K., Hidaka, H., et al., 1999. Palaeoproterozoic Thermal Events Recorded in the ∼4.0 Ga Acasta Gneiss, Canada: Evidence from SHRIMP U-Pb Dating of Apatite and Zircon. Geochimica et Cosmochimica Acta, 63(6): 899–4. https://doi.org/10.1016/s0016-7037(98)00303-2 Google Scholar
  58. Santosh, M., Tsunogae, T., Tsutsumi, Y., et al., 2009. Microstructurally Controlled Monazite Chronology of Ultrahigh-Temperature Granulites from Southern India: Implications for the Timing of Gondwana Assembly. Island Arc, 18(2): 248–4. https://doi.org/10.1111/j.1440-1738.2007.00601.x Google Scholar
  59. Schaller, M., Steiner, O., Studer, I., et al., 1999. Exhumation of Limpopo Central Zone Granulites and Dextral Continent-Scale Transcurrent Movement at 2.0 Ga along the Palala Shear Zone, Northern Province, South Africa. Precambrian Research, 96(3/4): 263–288. https://doi.org/10.1016/s0301-9268(99)00015-7 Google Scholar
  60. Schärer, U., Tapponnier, P., Lacassin, R., et al., 1990. Intraplate Tectonics in Asia: A Precise Age for Large-Scale Miocene Movement along the Ailao Shan-Red River Shear Zone, China. Earth and Planetary Science Letters, 97(1/2): 65–77. https://doi.org/10.1016/0012-821x(90)90099-j Google Scholar
  61. Searle, M. P., 2006. Role of the Red River Shear Zone, Yunnan and Vietnam, in the Continental Extrusion of SE Asia. Journal of the Geological Society, 163(6): 1025–4. https://doi.org/10.1144/0016-76492005-144 Google Scholar
  62. Searle, M. P., Yeh, M.-W., Lin, T.-H., et al., 2010. Structural Constraints on the Timing of Left-Lateral Shear along the Red River Shear Zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6(4): 316–4. https://doi.org/10.1130/ges00580.1 Google Scholar
  63. Sengör, A. C., 1984. The Cimmeride Orogenic System and the Tectonics of Eurasia. Geological Society of America Special Paper, 195: 82. https://doi.org/10.1130/spe195-p1 Google Scholar
  64. Tang, Y., Liu, J. L., Tran, M. D., et al., 2013. Timing of Left-Lateral Shearing along the Ailao Shan-Red River Shear Zone: Constraints from Zircon U-Pb Ages from Granitic Rocks in the Shear Zone along the Ailao Shan Range, Western Yunnan, China. International Journal of Earth Sciences, 102(3): 605–4. https://doi.org/10.1007/s00531-012-0831-y Google Scholar
  65. Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–4. https://doi.org/10.1038/343431a0 Google Scholar
  66. Tapponnier, P., Peltzer, G., Le Dain, A., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611–4.  https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2Google Scholar
  67. Trung, N. M., Tsujimori, T., Itaya, T., 2006. Honvang Serpentinite Body of the Song Ma Fault Zone, Northern Vietnam: A Remnant of Oceanic Lithosphere within the Indochina-South China Suture. Gondwana Research, 9(1/2): 225–230. https://doi.org/10.1016/j.gr.2005.06.012 Google Scholar
  68. Tsunogae, T., Santosh, M., 2006. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite: Implications for Metamorphic History and P-T Path. Lithos, 92(3/4): 524–536. https://doi.org/10.1016/j.lithos.2006.03.060 Google Scholar
  69. Wang, B. D., Wang, L. Q., Wang, D. B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8): 2527–2550 (in Chinese with English Abstract)Google Scholar
  70. Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1/2): 123–133. https://doi.org/10.1016/s0012-821x(01)00315-6 Google Scholar
  71. Wang, X. F., Metcalfe, I., Jian, P., et al., 2000. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, Age and Evolution. Journal of Asian Earth Sciences, 18(6): 675–4. https://doi.org/10.1016/s1367-9120(00)00039-0 Google Scholar
  72. Wu, C. M., 2018. Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry. Journal of Earth Science, 29(5): 977–4. https://doi.org/10.1007/s12583-018-0851-z Google Scholar
  73. Wu, C. M., Zhang, J., Ren, L. D., 2004. Empirical Garnet-Biotite-Plagioclase-Quartz (GBPQ) Geobarometry in Medium- to High-Grade Metapelites. Journal of Petrology, 45(9): 1907–4. https://doi.org/10.1093/petrology/egh038 Google Scholar
  74. Wu, W. B., Liu, J. L., Zhang, L. S., et al., 2017. Characterizing a Middle to Upper Crustal Shear Zone: Microstructures, Quartz c-Axis Fabrics, Deformation Temperatures and Flow Vorticity Analysis of the Northern Ailao Shan-Red River Shear Zone, China. Journal of Asian Earth Sciences, 139: 95–3. https://doi.org/10.1016/j.jseaes.2016.12.026 Google Scholar
  75. Yeh, M. W., Lee, T. Y., Lo, C. H., et al., 2008. Structural Evolution of the Day Nui Con Voi Metamorphic Complex: Implications on the Development of the Red River Shear Zone, Northern Vietnam. Journal of Structural Geology, 30(12): 1540–4. https://doi.org/10.1016/j.jsg.2008.08.007 Google Scholar
  76. Yumul, G. P. Jr., Zhou, M. F., Wang, C. Y., et al., 2008. Geology and Geochemistry of the Shuanggou Ophiolite (Ailao Shan Ophiolitic Belt), Yunnan Province, SW China: Evidence for a Slow-Spreading Oceanic Basin Origin. Journal of Asian Earth Sciences, 32(5/6): 385–395. https://doi.org/10.1016/j.jseaes.2007.11.007 Google Scholar
  77. Zhang, J. J., Zhong, D. L., San, H. Q., et al., 2006. Structural and Geochronological Evidence for Multiple Episodes of Deformation since Paleocene along the Ailaoshan-Red River Shear Zone, Southeastern Asia. Chinese Journal of Geology, 41(2): 291–310 (in Chinese with English Abstract)Google Scholar
  78. Zhang, J. J., Zhong, D. L., Zhou, Y., 1999. Tectonic Evolution of Southeast Asia and the Ailaoshan-Honghe Tectonic Belt. Geological Review, 45(4): 337–344 (in Chinese with English Abstract)Google Scholar
  79. Zhang, J. X., Meng, F. C., 2005. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3): 265–4. https://doi.org/10.1007/bf02897537 Google Scholar
  80. Zhang, Q., Zhou, D. J., Li, X. Y., et al., 1995. Characteristics and Genesis of Shuanggou Ophiolites, Yunnan Provience, China. Acta Petrologica Sinica, 11(Suppl.): 190–202 (in Chinese with English Abstract)Google Scholar
  81. Zhang, Q., Zhou, D. J., Zhao, D. S., et al., 1994. Ophiolites of the Hengduan Mountains, China: Characteristics and Tectonic Settings. Journal of Southeast Asian Earth Sciences, 9(4): 335–4. https://doi.org/10.1016/0743-9547(94)90044-2 Google Scholar
  82. Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–4. https://doi.org/10.1007/s12583-018-0852-y Google Scholar
  83. Zhang, Z. M., Xu, Z. Q., Xu, H. F., 2000. Petrology of Ultrahigh-Pressure Eclogites from the ZK703 Drillhole in the Donghai, Eastern China. Lithos, 52(1/2/3/4): 35–50. https://doi.org/10.1016/s0024-4937(99)00083-3 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Cheng Wei
    • 1
    • 2
  • Yuhao Zhao
    • 3
  • Luhua Zhu
    • 4
  • Xuexiang Qi
    • 1
    Email author
  • Zhihui Cai
    • 1
  • Xufeng Liu
    • 1
  • Guangfei Ma
    • 5
  1. 1.Key Laboratory for Continental Dynamics of Ministry of Land and Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Nanjing Institute of Geology and Mineral ResourcesChinese Academy of Geological SciencesNanjingChina
  4. 4.Geology Bureau for Nonferrous Metals of Guangdong ProvinceGuangzhouChina
  5. 5.Hangzhou Mechanical Design Research Institute of Ministry of Water ResourcesStandard & Quality Control Research Institute of Ministry of Water ResourcesHangzhouChina

Personalised recommendations