Advertisement

Journal of Earth Science

, Volume 30, Issue 3, pp 636–646 | Cite as

Geochemistry, Zircon U-Pb Age and Hf Isotope of the Huilanshan Granitoids in the North Dabie Terrane: Implications for Syn-Collapse Magmatism of Orogen

  • Shengxin Liu
  • Haijin Xu
Special Issue on Ophiolite, Orogenic Magmatism and Metamorphism Dedicated to IGCP 649: Diamonds and Recycled Mantle
  • 5 Downloads

Abstract

Syn-collapse magmatism is a critical issue for evolution of the continental orogen. The Dabie Orogen is a typical orogen which was suffered from a complete collapse. Two kinds of granitoids, namely, the coarse-grained diorite and the fine-grained granite, are recognized at the center of the Luotian extensional dome, providing an opportunity to decipher the syn-collapse magmatism in the Dabie Orogen. The diorites (125±3 Ma) are high K calc-alkaline rocks, with low SiO2 (51.9 wt.%–56.6 wt.%) and high MgO (3.5 wt.%–4.0 wt.%) contents. They are enriched in LREE and LILEs (e.g., Ba, K, Rb) and depleted in HFSEs (e.g., Ta, Nb, and Hf) with low ratio of Sr/Y (30.82–46.89). The granites (118±2 Ma) are shoshonite series rocks, with relatively high SiO2 (68.9 wt.%–72.6 wt.%) and low MgO (0.32 wt.%–0.66 wt.%) contents. They are also enriched in LREE and LILEs with weakly negative Eu anomalies (δEu=0.81–0.85), and are depleted in HFSEs with low Sr contents (338 ppm–477 ppm) and Sr/Y ratios (23.80–33.13). Therefore, the two kinds of granitoids have no geochemical characteristics of adakitic rocks, suggesting that they were generated from a normal or thinned crust level. The diorites have quite negative zircon εHf(t) values (-18.4 to -21.1), suggesting they were from partial melting of the mafic lower continental crust. The granites have relatively higher zircon εHf(t) values (-14.4 to -18.1). The granites also contains a series of old inherited zircon cores, such as two upper intercept ages of 2 628±41 and 1 840±37 Ma, and a concordant age of 807±9 Ma. All these features suggest that the granites were generated from partial melting of the felsic middle-lower continental crust. Thus, the Huilanshan Early Cretaceous granitoids coupled with the Luotian extensional dome revealed the collapsed process of the Dabie Orogen.

Keywords

orogenic collapse magmatism partial melting lower continental crust Dabie Orogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 41572039, 41772054, and 41372076) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGQYZX1704). Constructive comments from the two anonymous reviewers improved the manuscript significantly. We thank Profs. Jingsui Yang and Changqian Ma for editorial handling. We thank Dr. Keqing Zong from China University of Geosciences (Wuhan) for his help in LA-ICPMS zircon U-Pb dating and Hf isotopic analysis. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0892-y.

Supplementary material

12583_2019_892_MOESM1_ESM.xlsx (55 kb)
Supplementary material, approximately 55.1 KB.
12583_2019_892_MOESM2_ESM.docx (25 kb)
Supplementary material, approximately 25.4 KB.

References Cited

  1. Brown, M., 2001. Orogeny, Migmatites and Leucogranites: A Review. Journal of Earth System Science, 110(4): 313–336.  https://doi.org/10.1007/bf02702898 CrossRefGoogle Scholar
  2. Bryant, D. L., Ayers, J. C., Gao, S., et al., 2004. Geochemical, Age, and Isotopic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Complex, East Central China. Geological Society of America Bulletin, 116(5): 698–717.  https://doi.org/10.1130/b25302.2 CrossRefGoogle Scholar
  3. Cong, B. L., Wang, Q. C., 1996. A Review on Researches of UHPM Rocks in the Dabieshan-Sulu Region. In: Cong, B. L., ed., Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Kluwer Academic Publishers, Dordrecht, Boston, London. 1–7Google Scholar
  4. Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665.  https://doi.org/10.1038/347662a0 CrossRefGoogle Scholar
  5. Foster, D. A., Schafer, C., Fanning, C. M., et al., 2001. Relationships between Crustal Partial Melting, Plutonism, Orogeny, and Exhumation: Idaho-Bitterroot Batholith. Tectonophysics, 342(3/4): 313–350.  https://doi.org/10.1016/s0040-1951(01)00169-x CrossRefGoogle Scholar
  6. Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975.  https://doi.org/10.1016/s0016-7037(98)00121-5 CrossRefGoogle Scholar
  7. Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230.  https://doi.org/10.1016/s0012-821x(98)00152-6 CrossRefGoogle Scholar
  8. Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic–Early Jurassic Tectonic Unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339–13364.  https://doi.org/10.1029/2000jb900039 CrossRefGoogle Scholar
  9. He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815–3838CrossRefGoogle Scholar
  10. Hou, Z. H., 2005. Sm-Nd and Zircon SHRIMP U-Pb Dating of Huilanshan Mafic Granulite in the Dabie Mountains and Its Zircon Trace Element Geochemistry. Science in China Series D: Earth Sciences, 48(12): 2081–2091.  https://doi.org/10.1360/03yd0524 CrossRefGoogle Scholar
  11. Huang, F., Li, S. G., Dong, F., et al., 2007. Recycling of Deeply Subducted Continental Crust in the Dabie Mountains, Central China. Lithos, 96(1/2): 151–169.  https://doi.org/10.1016/j.lithos.2006.09.019 CrossRefGoogle Scholar
  12. Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1/2): 1–13.  https://doi.org/10.1016/j.chemgeo.2008.02.014 CrossRefGoogle Scholar
  13. Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146.  https://doi.org/10.1016/s0009-2541(98)00197-1 CrossRefGoogle Scholar
  14. Keay, S., Lister, G., Buick, I., 2001. The Timing of Partial Melting, Barrovian Metamorphism and Granite Intrusion in the Naxos Metamorphic Core Complex, Cyclades, Aegean Sea, Greece. Tectonophysics, 342(3/4): 275–312.  https://doi.org/10.1016/s0040-1951(01)00168-8 CrossRefGoogle Scholar
  15. Le Maitre, R. W., Bateman, P., Dudek, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, OxfordGoogle Scholar
  16. Leech, M. L., 2001. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1/2): 149–159.  https://doi.org/10.1016/s0012-821x(00)00374-5 CrossRefGoogle Scholar
  17. Lei, H. C., Xu, H. J., 2018. A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 29(5): 1167–1180.  https://doi.org/10.1007/s12583-018-0846-9 CrossRefGoogle Scholar
  18. Liu, Y. C., Li, S. G., Xu, S. T., et al., 2005. Geochemistry and Geochronology of Eclogites from the Northern Dabie Mountains, Central China. Journal of Asian Earth Sciences, 25(3): 431–443.  https://doi.org/10.1016/j.jseaes.2004.04.006 CrossRefGoogle Scholar
  19. Ma, C. Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1/2/3/4): 431–456.  https://doi.org/10.1016/s0024-4937(98)00043-7 CrossRefGoogle Scholar
  20. Ma, C. Q., Yang, K. G., Ming, H. L., et al., 2004. The Timing of Tectonic Transition from Compression to Extension in Dabieshan: Evidence from Mesozoic Granites. Science in China Series D: Earth Sciences, 47(5): 453–462Google Scholar
  21. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)1010635:tdog2.3.co;2 CrossRefGoogle Scholar
  22. Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  23. Okay, A. I., Şengör, A. M. C., Satir, M., 1993. Tectonics of an Ultrahigh-Pressure Metamorphic Terrane: The Dabie Shan/Tongbai Shan Orogen, China. Tectonics, 12(6): 1320–1334.  https://doi.org/10.1029/93tc01544 CrossRefGoogle Scholar
  24. Qu, W., Liu, X. C., Cui, J. J., et al., 2018. 40Ar/39Ar Dating of Muscovite from the Guishan Complex in the Tongbai Orogen, Central China, and Its Geological Implications. Earth Science, 43(1): 247–258.  https://doi.org/10.3799/dqkx.2018.015 (in Chinese with English Abstract)Google Scholar
  25. Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53.  https://doi.org/10.1016/s0040-1951(03)00053-2 CrossRefGoogle Scholar
  26. Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263.  https://doi.org/10.1016/0024-4937(89)90028-5 CrossRefGoogle Scholar
  27. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  28. Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609–2636.  https://doi.org/10.1016/j.gca.2007.03.008 CrossRefGoogle Scholar
  29. Wang, X. M., Liou, J. G., Mao, H. K., 1989. Coesite-Bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085–1088.  https://doi.org/10.1130/0091-7613(1989)0171085:cbeftd2.3.co;2 CrossRefGoogle Scholar
  30. Wang, Y. J., Fan, W. M., Peng, T. P., et al., 2005. Nature of the Mesozoic Lithospheric Mantle and Tectonic Decoupling beneath the Dabie Orogen, Central China: Evidence from 40Ar/39Ar Geochronology, Elemental and Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Mafic Igneous Rocks. Chemical Geology, 220(3/4): 165–189.  https://doi.org/10.1016/j.chemgeo.2005.02.020 CrossRefGoogle Scholar
  31. Wu, Y. B., Zheng, Y. F., Gao, S., et al., 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3/4): 308–322.  https://doi.org/10.1016/j.lithos.2007.07.008 CrossRefGoogle Scholar
  32. Xie, Z., Zheng, Y. F., Zhao, Z. F., et al., 2006. Mineral Isotope Evidence for the Contemporaneous Process of Mesozoic Granite Emplacement and Gneiss Metamorphism in the Dabie Orogen. Chemical Geology, 231(3): 214–235.  https://doi.org/10.1016/j.chemgeo.2006.01.028 CrossRefGoogle Scholar
  33. Xu, C. H., Zhou, Z. Y., Ma, C. Q., et al., 2002. Geochronological Constraints on 140–85 Ma Thermal Doming Extension in the Dabie Orogen, Central China. Science in China Series D: Earth Sciences, 45(9): 801–817.  https://doi.org/10.1007/bf02879515 Google Scholar
  34. Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3/4): 238–259.  https://doi.org/10.1016/j.chemgeo.2007.02.018 CrossRefGoogle Scholar
  35. Xu, H. J., Ye, K., Ma, C. Q., 2008. Early Cretaceous Granitoids in the North Dabie and Their Tectonic Implications: Sr-Nd and Zircon Hf Isotopic Evidences. Acta Petrologica Sinica, 24(1): 87–103 (in Chinese with English Abstract)Google Scholar
  36. Xu, H. J., Ma, C. Q., Song, Y. R., et al., 2012a. Early Cretaceous Intermediate-Mafic Dykes in the Dabie Orogen, Eastern China: Petrogenesis and Implications for Crust-Mantle Interaction. Lithos, 154: 83–99.  https://doi.org/10.1016/j.lithos.2012.06.030 CrossRefGoogle Scholar
  37. Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2012b. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23(1): 190–207.  https://doi.org/10.1016/j.gr.2011.12.009 CrossRefGoogle Scholar
  38. Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30–42.  https://doi.org/10.1007/s12583-017-0805-x CrossRefGoogle Scholar
  39. Xu, S. T., Okay, A. I., Ji, S., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80–82.  https://doi.org/10.1126/science.256.5053.80 CrossRefGoogle Scholar
  40. Xu, S. T., Liu, Y. C., Chen, G. B., et al., 2003. New Finding of MicroDiamonds in Eclogites from Dabie-Sulu Region in Central-Eastern China. Chinese Science Bulletin, 48(10): 988–994.  https://doi.org/10.1007/bf03184213 Google Scholar
  41. Zhang, C., Ma, C. Q., Holtz, F., 2010. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China): Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 119(3/4): 467–484.  https://doi.org/10.1016/j.lithos.2010.08.001 CrossRefGoogle Scholar
  42. Zhang, H. F., Gao, S., Zhong, Z. Q., et al., 2002. Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 186(3/4): 281–299.  https://doi.org/10.1016/s0009-2541(02)00006-2 CrossRefGoogle Scholar
  43. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2004. Zircon Isotope Evidence for Recycling of Subducted Continental Crust in Post-Collisional Granitoids from the Dabie Terrane in China. Geophysical Research Letters, 31(22): 283–294.  https://doi.org/10.1029/2004gl021061 CrossRefGoogle Scholar
  44. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2005. Zircon U-Pb Age, Element and C-O Isotope Geochemistry of Post-Collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-Central China. Lithos, 83(1/2): 1–28.  https://doi.org/10.1016/j.lithos.2004.12.014 CrossRefGoogle Scholar
  45. Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China: Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93(3/4): 248–272.  https://doi.org/10.1016/j.lithos.2006.03.067 CrossRefGoogle Scholar
  46. Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145–4165.  https://doi.org/10.1016/j.gca.2004.01.007 CrossRefGoogle Scholar
  47. Zheng, Y. F., Wu, Y. B., Zhao, Z. F., et al., 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378–400.  https://doi.org/10.1016/j.epsl.2005.09.025 CrossRefGoogle Scholar
  48. Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135–158.  https://doi.org/10.1016/j.chemgeo.2006.01.005 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations