Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 323–334 | Cite as

Geochronology and Petrogenesis of Mafic-Intermediate Intrusions on the Northern Margin of the Central Tianshan (NW China): Implications for Tectonic Evolution

  • Hongming CaiEmail author
  • He Yang
  • Xiangkuan Gong
Petrogeochemistry and Mineral Deposits
  • 7 Downloads

Abstract

Late Paleozoic mafic-intermediate intrusions are widespread in the central Tianshan belt, but their tectonic settings remain controversial. Petrogenesis of these intrusions can provide insights into the tectonic evolution of the belt and its adjacent areas. This study presents new whole-rock geochemical and zircon U-Pb geochronology and Hf isotopic data for the Yaxi diorite and Qianzishan gabbro on the northern margin of the central Tianshan (NW China). Zircon U-Pb dating yielded the magma crystallization ages of 313±4 and 295±4 Ma for the Yaxi diorite and Qianzishan gabbro, respectively. They have lower Mg# values, Ni and Cr contents than typical mantle-derived primary melt, with negative correlations between MgO, TFeO and SiO 2 contents, indicating clinopyroxene and olivine fractionation during magma evolution. They are characterized by enrichment of large ion lithophile elements (e.g., Rb, Ba and Sr) and depletion of high field strength elements (e.g., Nb, Ta and Ti) with high Ba/Th and Rb/Y, suggesting that their mantle sources had been metasomatized by slab-derived fluids. In addition, the Qianzishan gabbro has high Al2O3 contents (19.54 wt.%–20.88 wt.%) and positive Eu anomalies (Eu/Eu*=1.09–1.42), which can be attributed to accumulation of plagioclase. Geochemical and zircon Hf isotopic compositions reveal that both the Yaxi diorite and Qianzishan gabbro were derived from depleted lithospheric mantle in the spinel stability field with insignificant crustal contamination. In association with previous investigations, we suggest that the Yaxi and Qianzishan intrusions were emplaced in a subduction-related environment, which means that the subduction of the Junggar Ocean lasted at least to the earliest Permian.

Key Words

mafic-intermediate intrusions geochemistry petrogenesis tectonic implication central Tianshan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Key Laboratory of Xinjiang Uygur Autonomous Region (No. 2016D03002), the National Natural Science Foundation of China (No. 41562010) and the China Postdoctoral Science Foundation (No. 2017M613257) and Doctoral Scientific Research Foundation of Xinjiang University (No. BS100127). Constructive comments from two anonymous reviewers and guidance from the editors are greatly appreciated. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-1205-6.

Supplementary material

12583_2018_1205_MOESM1_ESM.xlsx (13 kb)
Supplementary material, approximately 228 KB.

References Cited

  1. BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region), 2013. Geological Report for 1: 250 000 Suvery of Yamansu Area (K46c003003). The 1st Unit, Regional Survey Team, Bureau of Geology and Mineral Resources of Xinjiang Province, Urumchi (in Chinese)Google Scholar
  2. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258.  https://doi.org/10.1016/s0012-821x(97)00040-x CrossRefGoogle Scholar
  3. Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2/3/4): 218–235.  https://doi.org/10.1016/j.jseaes.2007.10.014 CrossRefGoogle Scholar
  4. Chen, X. J., Shu, L. S., Santosh, M., 2011. Late Paleozoic Post-Collisional Magmatism in the Eastern Tianshan Belt, Northwest China: New Insights from Geochemistry, Geochronology and Petrology of Bimodal Volcanic Rocks. Lithos, 127(3/4): 581–598.  https://doi.org/10.1016/j.lithos.2011.06.008 CrossRefGoogle Scholar
  5. Class, C., Miller, D. M., Goldstein, S. L., et al., 2000. Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc. Geochemistry, Geophysics, Geosystems, 1(6): 927–928.  https://doi.org/10.1029/1999gc000010 CrossRefGoogle Scholar
  6. Cui, X., Zhu, W. B., Fitzsimons, I. C. W., et al., 2017. A Possible Transition from Island Arc to Continental Arc Magmatism in the Eastern Jiangnan Orogen, South China: Insights from a Neoproterozoic (870–860 Ma) Gabbroic-Dioritic Complex near the Fuchuan Ophiolite. Gondwana Research, 46: 1–16.  https://doi.org/10.1016/j.gr.2017.02.012 CrossRefGoogle Scholar
  7. DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189–202.  https://doi.org/10.1016/0012-821x(81)90153-9 CrossRefGoogle Scholar
  8. Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn-and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2/3): 568–581.  https://doi.org/10.1016/j.gr.2011.01.013 CrossRefGoogle Scholar
  9. Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019.  https://doi.org/10.1029/97jb00788 CrossRefGoogle Scholar
  10. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147.  https://doi.org/10.1016/s0016-7037(99)00343-9 CrossRefGoogle Scholar
  11. Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129–152.  https://doi.org/10.1016/j.earsci-rev.2017.09.012 CrossRefGoogle Scholar
  12. Hawkesworth, C., Turner, S., Gallagher, K., et al., 1995. Calc-Alkaline Magmatism, Lithospheric Thinning and Extension in the Basin and Range. Journal of Geophysical Research: Solid Earth, 100(B6): 10271–10286.  https://doi.org/10.1029/94jb02508 CrossRefGoogle Scholar
  13. Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Geologica Sinica, 23(10): 2595–2604 (in Chinese with English Abstract)Google Scholar
  14. Hou, K. J., Tian, Y. R., Li, Y. H., 2009. In-situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481–492 (in Chinese with English Abstract)Google Scholar
  15. Hu, A. Q., Zhang, G. X., Zhang, Q. F., et al., 1998. Constraints on the Age of Basement and Crustal Growth in Tianshan Orogen by Nd Isotopic Composition. Science in China Series D: Earth Sciences, 41(6): 648–657.  https://doi.org/10.1007/bf02878748 CrossRefGoogle Scholar
  16. Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548.  https://doi.org/10.1139/e71-055 CrossRefGoogle Scholar
  17. Labanieh, S., Chauvel, C., Germa, A., et al., 2012. Martinique: A Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 53(12): 2441–2464.  https://doi.org/10.1093/petrology/egs055 CrossRefGoogle Scholar
  18. le Bas, M. J., le Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750.  https://doi.org/10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  19. Lei, R. X., Wu, C. Z., Gu, L. X., et al., 2011. Zircon U-Pb Chronology and Hf Isotope of the Xingxingxia Granodiorite from the Central Tianshan Zone (NW China): Implications for the Tectonic Evolution of the Southern Altaids. Gondwana Research, 20(2/3): 582–593.  https://doi.org/10.1016/j.gr.2011.02.010 CrossRefGoogle Scholar
  20. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 CrossRefGoogle Scholar
  21. Ludwig, K. R., 2003. Isoplot/Ex Version 3: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center, BerkeleyGoogle Scholar
  22. Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228–243.  https://doi.org/10.13039/501100004543 CrossRefGoogle Scholar
  23. Ma, X. X., Shu, L. S., Meert, J. G., et al., 2014. The Paleozoic Evolution of Central Tianshan: Geochemical and Geochronological Evidence. Gondwana Research, 25(2): 797–819.  https://doi.org/10.1016/j.gr.2013.05.015 CrossRefGoogle Scholar
  24. Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265–282.  https://doi.org/10.1007/s12583-016-0925-8 CrossRefGoogle Scholar
  25. Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153–162 (in Chinese with English Abstract)Google Scholar
  26. Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4): 207–218.  https://doi.org/10.1016/0009-2541(86)90004-5 CrossRefGoogle Scholar
  27. Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(11): 251–285.  https://doi.org/10.1146/annurev.ea.23.050195.001343
  28. Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237–260.  https://doi.org/10.2475/03.2011.03 CrossRefGoogle Scholar
  29. Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. 373–400CrossRefGoogle Scholar
  30. Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687.  https://doi.org/10.1126/science.1061372 CrossRefGoogle Scholar
  31. Shu, L. S., Charvet, J., Lu, H. F., et al., 2002. Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern-Central Tianshan Belt, China. Acta Geologica Sinica—English Edition, 76(3): 308–323.  https://doi.org/10.1111/j.1755-6724.2002.tb00547.x Google Scholar
  32. Shu, L. S., Wang, B., Zhu, W. B., et al., 2011. Timing of Initiation of Extension in the Tianshan, Based on Structural, Geochemical and Geochronological Analyses of Bimodal Volcanism and Olistostrome in the Bogda Shan (NW China). International Journal of Earth Sciences, 100(7): 1647–1663.  https://doi.org/10.1007/s00531-010-0575-5 CrossRefGoogle Scholar
  33. Sisson, T. W., Grove, T. L., 1993. Temperatures and H2O Contents of Low-MgO High-Alumina Basalts. Contributions to Mineralogy and Petrology, 113(2): 167–184.  https://doi.org/10.1007/bf00283226 CrossRefGoogle Scholar
  34. Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2011a. Geochemistry and Geochronology of Acidic Rocks in the Beishan Region, NW China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 41(1): 31–43.  https://doi.org/10.1016/j.jseaes.2010.12.002 CrossRefGoogle Scholar
  35. Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2011b. U-Pb Ages and Hf-O Isotopes of Zircons from Late Paleozoic Mafic-Ultramafic Units in the Southern Central Asian Orogenic Belt: Tectonic Implications and Evidence for an Early-Permian Mantle Plume. Gondwana Research, 20(2/3): 516–531.  https://doi.org/10.1016/j.gr.2010.11.015 CrossRefGoogle Scholar
  36. Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2012. Occurrence of an Alaskan-Type Complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: Inferences from Petrological and Mineralogical Studies. International Geology Review, 54(3): 249–269.  https://doi.org/10.1080/00206814.2010.543009 CrossRefGoogle Scholar
  37. Sun, G. H., Li, J. Y., Wang, D. G., et al., 2006. Zircon Shrimp U-Pb Ages of Granite and Granodiorite at the Side of the Aqqikkuduk Fault, East Tianshan, Xinjiang, China, and Its Tectonic Implications. Geoglogical Bulletin of China, 25(8): 945–952 (in Chinese with English Abstract)Google Scholar
  38. Sun, L. H., Wang, Y. J., Fan, W. M., et al., 2008. Post-Collisional Potassic Magmatism in the Southern Awulale Mountain, Western Tianshan Orogen: Petrogenetic and Tectonic Implications. Gondwana Research, 14(3): 383–394.  https://doi.org/10.1016/j.gr.2008.04.002 CrossRefGoogle Scholar
  39. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  40. Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1/2): 84–98.  https://doi.org/10.1016/j.lithos.2011.06.007 CrossRefGoogle Scholar
  41. Tang, G. J., Chung, S. L., Wang, Q., et al., 2014. Petrogenesis of a Late Carboniferous Mafic Dike-Granitoid Association in the Western Tianshan: Response to the Geodynamics of Oceanic Subduction. Lithos, 202–203: 85–99.  https://doi.org/10.1016/j.lithos.2014.04.010 CrossRefGoogle Scholar
  42. Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Metasomatized Lithosphere-Asthenosphere Interaction during Slab Roll-Back: Evidence from Late Carboniferous Gabbros in the Luotuogou Area, Central Tianshan. Lithos, 155: 67–80.  https://doi.org/10.1016/j.lithos.2012.08.015 CrossRefGoogle Scholar
  43. Wagner, T. P., Donnelly-Nolan, J. M., Grove, T. L., 1995. Evidence of Hydrous Differentiation and Crystal Accumulation in the Low-MgO, High-Al2O3 Lake Basalt from Medicine Lake Volcano, California. Contributions to Mineralogy and Petrology, 121(2): 201–216.  https://doi.org/10.1007/s004100050099 CrossRefGoogle Scholar
  44. Wang, B., Cluzel, D., Jahn, B. M., et al., 2014. Late Paleozoic Pre-and Syn-Kinematic Plutons of the Kangguer-Huangshan Shear Zone: Inference on the Tectonic Evolution of the Eastern Chinese North Tianshan. American Journal of Science, 314(1): 43–79.  https://doi.org/10.2475/01.2014.02 CrossRefGoogle Scholar
  45. Wang, C. S., Gu, L. X., Zhang, Z. Z., et al., 2009. Petrogenesis and Geological Implications of the Permian High-K Calc-Alkaline Granites in Harlik Mountains of Eastern Tianshan, NW China. Acta Petrologica Sinica, 25(6): 1499–1511 (in Chinese with English Abstract)Google Scholar
  46. Wang, Q., Zhao, Z. H., Xu, J. F., et al., 2006. Carboniferous Adakite-High-Mg Andesite-Nb-Enriched Basaltic Rock Suites in the Northern Tianshan Area: Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt and Cu-Au Mineralization. Acta Petrologica Sinica, 22(1): 11–30 (in Chinese with English Abstract)Google Scholar
  47. Wang, X. J., Wang, G. H., Zhuan, S. P., et al., 2011. Late Orodovician Collision and Orogen in Middle Tianshan: Evidences of Geochemical Analyses and Geochronology on Metamorphosed Granitoid Rock. Acta Petrologica Sinica, 27(7): 2203–2212 (in Chinese with English Abstract)Google Scholar
  48. Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2008. Zircon U-Pb Age, Sr-Nd Isotope Geochemistry and Geological Significances of the Weiya Mafic-Ultramafic Complex, Xinjiang. Acta Petrologica Sinica, 24(4): 781–792 (in Chinese with English Abstract)Google Scholar
  49. Watson, E. B., 1982. Basalt Contamination by Continental Crust: Some Experiments and Models. Contributions to Mineralogy and Petrology, 80(1): 73–87.  https://doi.org/10.1007/bf00376736 CrossRefGoogle Scholar
  50. Wilson, M., 1989. Igneous Petrogenesis: AGlobal Approach. Unwyn Hyman, LondonCrossRefGoogle Scholar
  51. Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30.  https://doi.org/10.1016/0012-821x(80)90116-8 CrossRefGoogle Scholar
  52. Woodhead, J. D., Eggins, S. M., Johnson, R. W., 1998. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39(9): 1641–1668.  https://doi.org/10.1093/petroj/39.9.1641 CrossRefGoogle Scholar
  53. Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2008. Relative Contributions of Crust and Mantle to the Generation of the Tianshan Carboniferous Rift-Related Basic Lavas, Northwestern China. Journal of Asian Earth Sciences, 31(4/5/6): 357–378.  https://doi.org/10.1016/j.jseaes.2007.07.002 CrossRefGoogle Scholar
  54. Xia, L. Q., Xu, X. Y., Xia, Z. C., et al., 2004. Petrogenesis of Carboniferous Rift-Related Volcanic Rocks in the Tianshan, Northwestern China. Geological Society of America Bulletin, 116(3): 419–433.  https://doi.org/10.1130/b25243.1 CrossRefGoogle Scholar
  55. Xiao, W. J., Zhang, L. C., Qin, K. X., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370–395.  https://doi.org/10.2475/ajs.304.4.370 CrossRefGoogle Scholar
  56. Xiao, W. J., Han, C. M., Liu, W., et al., 2014. How Many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiang-West Gansu (NW China)?. Geoscience Frontiers, 5(4): 525–536.  https://doi.org/10.1016/j.gsf.2014.04.002 CrossRefGoogle Scholar
  57. Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217.  https://doi.org/10.1007/s00531-008-0407-z CrossRefGoogle Scholar
  58. Xu, X. Y., Xia, L. Q., Ma, Z. P., et al., 2006. Shrimp Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83–94 (in Chinese with English Abstract)Google Scholar
  59. Zhang, D. Y., Zhou, T. F., Yuan, F., et al., 2013. Geochemical and Isotopic Constraints on the Genesis of the Jueluotage Native Copper Mineralized Basalt, Eastern Tianshan, Northwest China. Journal of Asian Earth Sciences, 73(8): 317–333.  https://doi.org/10.1016/j.jseaes.2013.04.043 CrossRefGoogle Scholar
  60. Zhang, H. C., Zhu, Y. F., Feng, W. Y., et al., 2017. Paleozoic Intrusive Rocks in the Nalati Mountain Range (NMR), Southwest Tianshan: Geodynamic Evolution Based on Petrology and Geochemical Studies. Journal of Earth Science, 28(2): 196–217.  https://doi.org/10.1007/s12583-016-0922-1 CrossRefGoogle Scholar
  61. Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2015a. Latest Carboniferous Closure of the Junggar Ocean Constrained by Geochemical and Zircon U-Pb-Hf Isotopic Data of Granitic Gneisses from the Central Tianshan Block, NW China. Lithos, 238(3): 26–36.  https://doi.org/10.1016/j.lithos.2015.09.012 CrossRefGoogle Scholar
  62. Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2015b. Paleozoic Magmatism and Metamorphism in the Central Tianshan Block Revealed by U-Pb and Lu-Hf Isotope Studies of Detrital Zircons from the South Tianshan Belt, NW China. Lithos, 233(2): 193–208.  https://doi.org/10.1016/j.lithos.2015.06.002 CrossRefGoogle Scholar
  63. Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016a. Late Ordovician Adakitic Rocks in the Central Tianshan Block, NW China: Partial Melting of Lower Continental Arc Crust during Back-Arc Basin Opening. Geological Society of America Bulletin, 128(9/10): 1367–1382.  https://doi.org/10.1130/b31452.1 CrossRefGoogle Scholar
  64. Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016b. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256–257: 269–281.  https://doi.org/10.1016/j.lithos.2016.04.006 CrossRefGoogle Scholar
  65. Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47.  https://doi.org/10.1016/j.precamres.2006.09.002 CrossRefGoogle Scholar
  66. Zhou, M. F., Michael, L. C., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3/4): 233–257.  https://doi.org/10.1016/j.chemgeo.2004.05.005 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Geology and Mining EngineeringXinjiang UniversityUrumqiChina
  2. 2.Geography Postdoctoral Research StationXinjiang UniversityUrumqiChina
  3. 3.Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina

Personalised recommendations