Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 272–285 | Cite as

Geochemical Characteristics and Geological Significance of Meta-Volcanic Rocks of the Bainaimiao Group, Sonid Right Banner, Inner Mongolia, China

  • Chao ZhangEmail author
  • Jingyu Quan
  • Zhenghong LiuEmail author
  • Zhongyuan Xu
  • Xuejiao Pang
  • Yujin Zhang
Petrogeochemistry and Mineral Deposits
  • 6 Downloads

Abstract

The Bainaimiao Group, which crops out in the Sonid Right Banner area of Inner Mongolia, China, comprises mainly metamorphosed volcano-sedimentary rocks. This group can be divided into two formations: a lower formation characterized by intermediate-felsic volcanic rocks, and an upper formation of intermediate-mafic volcanic rocks. Zircon dating indicates that biotite leptynite from the lower formation and chlorite-sericite schist from the upper formation crystallized at 499±2 and 478±2 Ma, respectively, corresponding to different volcanic events. Meta-volcanic rocks of the Bainaimiao Group belong to the calcalkaline series, and the SiO 2 concentrations suggest that their protoliths were mainly basalts and rhyolites. Greenschist rocks of the group are enriched in light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs), with (La/Yb)N ratios of 3.08–10.9. In addition, they are enriched in large-ion lithophile elements, including Rb, Ba and K, and depleted in the high-field-strength elements Nb, Ta and Ti. The felsic meta-volcanic rocks also exhibit relative enrichments in LREEs compared with HREEs, with high (La/Yb)N ratios of 2.92–9.89, and are enriched in Rb, Ba, Zr and Hf, and depleted in Sr, Nb and Ta. These geochemical characteristics indicate that the meta-basic volcanic rocks were originated from partial melting of sub-arc mantle wedge that had been previously metasomatized by subducted-slab-derived fluids, whereas the meta-felsic volcanic rocks were generated by partial melting of continental crust. These results suggest that the meta-volcanic rocks of the Bainaimiao Group are the products of oceanic plate subduction magmatism along an active continental margin, which can be attributed to Early Paleozoic subduction of the Paleo-Asian Ocean plate beneath the northern margin of the North China Craton.

Key Words

Inner Mongolia Bainaimiao Group active continental margin northern margin of the North China Craton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the Nation Key R&D Program of China (No. 2017YFC0601305-01) and the China Geological Survey (Nos. DD20160048-04, DD20160343-08, DD20160343-09). We thank the reviewers and the editors for constructive comments. We are grateful to the staff of the Tianjin Institute of Geology and Mineral Resources, China, for their assistance with zircon U-Pb analyses. We also thank Wanqiong Wang, Zhiwei Fan, and Xinhui Bai for help in the field. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-1202-9.

Supplementary material

12583_2018_1202_MOESM1_ESM.xlsx (19 kb)
Supplementary material, approximately 228 KB.

References Cited

  1. Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Sub-division for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87–110.  https://doi.org/10.1016/s1367-9120(02)00017-2 CrossRefGoogle Scholar
  2. Baker, J. A., Menzies, M. A., Thirlwall, M. F., et al., 1997. Petrogenesis of Quaternary Intraplate Volcanism, Sana’a, Yemen: Implications for Plume-Lithosphere Interaction and Polybaric Melt Hybridization. Journal of Petrology, 38(10): 1359–1390.  https://doi.org/10.1093/pet-roj/38.10.1359 CrossRefGoogle Scholar
  3. Belousova, E., Griffin, W., O’Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622.  https://doi.org/10.1007/s00410-002-0364-7 CrossRefGoogle Scholar
  4. BGMRIM (Bureau of Geology and Mineral Resources of Inner Mongolia), 1991. Regional Geology of Neimongol (Inner Mongolia) Autonomous Region. Geological Publishing House, Beijing (in Chinese with English Abstract)Google Scholar
  5. Cabanis, B., Lecolle, M., 1989. Le Diagramme La/10-Y/15-Nb/8: Un Outil Pour la Discrimination Desseries Volcaniques et al Mise en Evidence des Processus de Melang et/ou de Contamination Crustale (the La/10-Y/15-Nb/8 Diagram: A Tool for Distinguishing Volcanicseries and Discovering Crustal Mixing and/or Contamination): Comptes Rendus de l’Academie des Sciences, Série 2, Mecanique, Physique, Chimie, Sciences de l’Univers. Sciences de la Terre, 309(20): 2023–2029Google Scholar
  6. de Jong, K., Xiao, W., Windley, B. F., et al., 2006. Ordovician 40Ar/39Ar Phengite Ages from the Blueschist-Facies Ondor Sum Subduction-Accretion Complex (Inner Mongolia) and Implications for the Early Paleozoic History of Continental Blocks in China and Adjacent Areas. American Journal of Science, 306(10): 799–845.  https://doi.org/10.2475/10.2006.02 CrossRefGoogle Scholar
  7. Deng, J. F., Molan, E., Lu, F. X., 1987. The Composition, Structure and Thermal Condition of the Upper Mantle beneath Northeast China. Acta Petrologica et Minralogica, 6(1): 1–10 (in Chinese with English Abstract)Google Scholar
  8. Gu, C. N., Zhou, Z. G., Zhang, Y. K., et al., 2012. Zircon Dating of the Baiyinduxi Group in Inner Mongolia and Its Tectonic Interpretation. Geoscience, 26(1): 1–9.  https://doi.org/10.1007/s11783-011-0280-z Google Scholar
  9. Gutiérrez, F., Gioncada, A., Ferran, O. G., et al., 2005. The Hudson Volcano and Surrounding Monogenetic Centres (Chilean Patagonia): An Example of Volcanism Associated with Ridge-Trench Collision Environment. Journal of Volcanology and Geothermal Research, 145(3/4): 207–233.  https://doi.org/10.1016/j.jvolgeores.2005.01.014 CrossRefGoogle Scholar
  10. Han, G. Q., Liu, Y. J., Neubauer, F., et al., 2015. U-Pb Age and Hf Isotopic Data of Detrital Zircons from the Devonian and Carboniferous Sandstones in Yimin Area, NE China: New Evidences to the Collision Timing between the Xing’an and Erguna Blocks in Eastern Segment of Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 97: 211–228.  https://doi.org/10.1016/j.jseaes.2014.08.006 CrossRefGoogle Scholar
  11. Hu, X., 1988. On the Tectonic Evolution and the Metallogenesis of the Paleozoic Continental Margin in the North Side of North China Platform. J. Hebei Coll. Geol., 11: 5–25 (in Chinese with English Abstract)Google Scholar
  12. Hu, X., Xu, C. S., Niu, S. Y., 1990. Evolution of the Early Paleozoic Continental Margin in Northern Margin of the North China Platform. Peking University Press, Beijing (in Chinese with English Abstract)Google Scholar
  13. Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in-situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69.  https://doi.org/10.1016/j.chemgeo.2004.06.017 CrossRefGoogle Scholar
  14. Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Oogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181–193.  https://doi.org/10.1017/s0263593300007367 CrossRefGoogle Scholar
  15. Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259.  https://doi.org/10.1016/j.lithos.2007.07.005 CrossRefGoogle Scholar
  16. Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1/2): 169–190.  https://doi.org/10.1016/j.lithos.2010.04.014 CrossRefGoogle Scholar
  17. Koschek, G., 1993. Origin and Significance of the SEM Cathodoluminescence from Zircon. Journal of Microscopy, 171(3): 223–232.  https://doi.org/10.1111/j.1365-2818.1993.tb03379.x CrossRefGoogle Scholar
  18. Li, H. K., Zhu, S. X., Xiang, Z. Q., et al., 2010. Zircon U-Pb Dating on Tuff Bed from Gaoyuzhang Formation in Yanqing, Beijing: Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China Craton. Acta Petrologica Sinica, 26(7): 2131–2140 (in Chinese with English Abstract)Google Scholar
  19. Li, J. W., Zhao, S. B., Huang, G. J., et al., 2007. Origin of Bainaimiao Copper Deposit, Inner Mongolia. Geol. Prospect., 43: 1–5 (in Chinese with English Abstract)Google Scholar
  20. Li, W. B., Hu, C. S., Zhong, R. C., et al., 2015. U-Pb, 39Ar/40Ar Geochronology of the Metamorphosed Volcanic Rocks of the Bainaimiao Group in Central Inner Mongolia and Its Implications for Ore Genesis and Geodynamic Setting. Journal of Asian Earth Sciences, 97: 251–259.  https://doi.org/10.1016/j.jseaes.2014.06.007 CrossRefGoogle Scholar
  21. Li, W. B., Zhong, R. C., Xu, C., et al., 2012. U-Pb and Re-Os Geochronology of the Bainaimiao Cu-Mo-Au Deposit, on the Northern Margin of the North China Craton, Central Asia Orogenic Belt: Implications for Ore Genesis and Geodynamic Setting. Ore Geology Reviews, 48: 139–150.  https://doi.org/10.1016/j.oregeorev.2012.03.001 CrossRefGoogle Scholar
  22. Li, C. D., Ran, H., Zhao, L. G., et al., 2012. LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance. Acta Petrologica Sinica, 28(11): 3705–3714 (in Chinese with English Abstract)Google Scholar
  23. Liu, C. F., Liu, W. C., Wang, H. P., et al., 2014. Geochronology and Geochemistry of the Bainaimiao Metavolcanic Rocks in the Northern Margin of North China Craton. Acta Geologica Sinica, 88(7): 1273–1287 (in Chinese with English Abstract)Google Scholar
  24. Liu, D. Y., Jian, P., Zhang, Q., et al., 2003. SHRIMP Dating of Adakites in the Tulinkai Ophiolite, Inner Mongolia: Evidence for Early Paleozoic Subduction. Acta Geologica Sinica, 77(3): 317–327 (in Chinese with English Abstract)Google Scholar
  25. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 Google Scholar
  26. Ludwig, K. R., 2003. User’s Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1–70Google Scholar
  27. MacDonald, R., 2001. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877–900.  https://doi.org/10.1093/petrology/42.5.877 CrossRefGoogle Scholar
  28. Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4): 207–218.  https://doi.org/10.1016/0009-2541(86)90004-5 CrossRefGoogle Scholar
  29. Nie, F. J., Pei, R. F., Wu, L. S., et al., 1993. Magmatic Activity and Metallogeny of the Bainaimiao District, Inner Mongolia, People’s Republic of China. Beijing Science and Technology Press, Beijing (in Chinese)Google Scholar
  30. Nie, F. J., Pei, R. F., Wu, L. S., et al., 1994. Nd, Sr and Pb Isotopic Study of Copper (Gold) and Gold Deposit in Bainaimiao Area, Inner Mongolia. Min. Deposits, 13: 331–344 (in Chinese with English Abstract)Google Scholar
  31. Nie, F. J., Pei, R. F., Wu, L. S., et al., 1995. Nd- and Sr-Isotopic Study on Greenschist and Granodiorite of the Bainaimiao District, Inner Mongolia, China. Bulletin of the Chinese Academy of Geological Sciences, 1: 36–44 (in Chinesewith English Abstract)Google Scholar
  32. Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley, Chichester. 525–548Google Scholar
  33. Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1–4): 14–48.  https://doi.org/10.1016/j.li-thos.2007.06.016 CrossRefGoogle Scholar
  34. Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285.  https://doi.org/10.1146/annurev.ea.23.050195.001343 CrossRefGoogle Scholar
  35. Pei, F. P., Zhang, Y., Wang, Z. W., et al., 2016. Early-Middle Paleozoic Subduction-Collision History of the South-Eastern Central Asian Orogenic Belt: Evidence from Igneous and Metasedimentary Rocks of Central Jilin Province, NE China. Lithos, 261: 164–180.  https://doi.org/10.1016/j.lithos.2015.12.010 CrossRefGoogle Scholar
  36. Safonova, I. Y., Utsunomiya, A., Kojima, S., et al., 2009. Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16(3/4): 587–608.  https://doi.org/10.1016/j.gr.2009.02.008 CrossRefGoogle Scholar
  37. Safonova, I. Y., Seltmann, R., Kröner, A., et al., 2011. A New Concept of Continental Construction in the Central Asian Orogenic Belt. Episodes, 34: 186–196Google Scholar
  38. Shao, J. A., 1991. Crustal Evolution in the Middle Part of Margin of the North China Plate. Peking University Press, Beijing (in Chinese)Google Scholar
  39. Shi, G. Z., Faure, M., Xu, B., et al., 2013. Structural and Kinematic Analysis of the Early Paleozoic Ondor Sum-Hongqi Mélange Belt, Eastern Part of the Altaids (CAOB) in Inner Mongolia, China. Journal of Asian Earth Sciences, 66: 123–139.  https://doi.org/10.1016/j.jseaes.2012.12.034 CrossRefGoogle Scholar
  40. Tang, K. D., 1990. Tectonic Development of Paleozoic Fold Belts at the North Margin of the Sino-Korean Craton. Tectonics, 9(2): 249–260 (in Chinese with English Abstract)CrossRefGoogle Scholar
  41. Tang, K. D., 1992. Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate. Peking University Press, Beijing (in Chinese with English Abstract)Google Scholar
  42. Tang, K. D., Wang, Y., He, G. Q., et al., 1995. Continental-Margin Structure of Northeast China and Its Adjacent Areas. Acta Geologica Sinica, 8(3): 241–258.  https://doi.org/10.1111/j.1755-6724.1995.mp8003002.x Google Scholar
  43. Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265.  https://doi.org/10.1029/95rg00262 CrossRefGoogle Scholar
  44. Tong, Y., Hong, D. W., Wang, T., et al., 2010. Spatial and Temporal of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geologica Sinica, 31(3): 395–412 (in Chinese with English Abstract)Google Scholar
  45. Wang, D. F., 1985. Connotation and Age Assignments of the Wundurmiao Group Inner Monggol and Its Significance in the Structural Development of the Plate Convergent Zone. Geological Review, 31(5): 461–468 (in Chinese with English Abstract)Google Scholar
  46. Wang, X. A., 2014. Tectonic Evolution in the Central Segment of the Northern Margin of the North China Plate from Early Paleozoic to Devonina: [Dissertation]. Jilin University, Changchun. 85–88 (in Chinese with English Abstract)Google Scholar
  47. Wang, X. A., Xu, Z. Y., Liu, Z. H., et al., 2015. Geochronological, Geochemical Characteristics and Geological Significance of Deyanqimiao Amphibolite Series in Inner Mongolia. Journal of Earth Sciences and Environment, 32(2): 1–10 (in Chinese with English Abstract)Google Scholar
  48. Wang, Z. W., Pei, F. P., Xu, W. L., et al., 2016. Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Zircon U-Pb-Hf Isotopes and Geochemistry of Early Paleozoic Rocks in Yanbian Region, NE China. Gondwana Research, 38: 334–350.CrossRefGoogle Scholar
  49. Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343.  https://doi.org/10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar
  50. Windley, B. F., Alexeiev, D., Xiao, W., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47.  https://doi.org/10.1144/0016-76492006-022 CrossRefGoogle Scholar
  51. Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30.  https://doi.org/10.1016/0012-821x(80)90116-8 CrossRefGoogle Scholar
  52. Wu, T. R., Zhang, C., Wan, J. H., 1998. Tectonic Settings of Ondor Sum Group and Its Tectionic Interpretation in Ondor Sum Region, Inner Mongolia. Geological Journal of China Universities, 4(2): 168–175 (in Chinese with English Abstract)Google Scholar
  53. Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253–273.  https://doi.org/10.1016/j.gr.2010.01.007 CrossRefGoogle Scholar
  54. Xiao, W. J., Sun, M., Santosh, M., 2015. Continental Reconstruction and Metallogeny of the Circum-Junggar Areas and Termination of the Southern Central Asian Orogenic Belt. Geoscience Frontiers, 6(2): 137–140.  https://doi.org/10.1016/j.gsf.2014.11.003 CrossRefGoogle Scholar
  55. Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069–1090.  https://doi.org/10.1029/2002tc001484 CrossRefGoogle Scholar
  56. Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342–1364.  https://doi.org/10.1016/j.gr.2012.05.015 CrossRefGoogle Scholar
  57. Xu, C. S., 1988. Lithological Study of the Amphiboites Rocks from the Basement of the Bainaimiao Group Inner Mongolia. Journal of Heibei College of Geology, 11(3): 40–57 (in Chinese with English Abstract)Google Scholar
  58. Zhang, C., Wu, T. R., 1998. Sm-Nd, Rb-Sr Isotopic Isochron of Metamorphic Volcanic Rochs of Ondor Sun Group, Inner Mongolia. Scientia Geologica Sinica, 33(1): 25–30 (in Chinese with English Abstract)Google Scholar
  59. Zhang, C., Wu, T. R., 1999. Features and Tectonic Implications of the Ophiolitic Mélange in the Southern Suzuoqi, Inner Mongolia. Scientia Geologica Sinica, 34(3): 381–389 (in Chinese with English Abstract)Google Scholar
  60. Zhang, C., 1996. Evolution of the Volcanic Type Passive Continental Margin and the Underplating of Magmatic Activity during Extension. Geological Journal of China Universities, 2(1): 48–57 (in Chinese with English Abstract)Google Scholar
  61. Zhang, S. H., Zhao, Y., Ye, H., et al., 2014. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9/10): 1275–1300.  https://doi.org/10.1130/b31042.1 CrossRefGoogle Scholar
  62. Zhang, W., Jian, P., Kröner, A., et al., 2013. Magmatic and Metamorphic Development of an Early to Mid-Paleozoic Continental Margin Arc in the Southernmost Central Asian Orogenic Belt, Inner Mongolia, China. Journal of Asian Earth Sciences, 72: 63–74.  https://doi.org/10.1016/j.jseaes.2012.05.025 CrossRefGoogle Scholar
  63. Zhao, Y., Wang, J. P., Yang, Z. H., et al., 2013. Re-Os Isotopic Dating of Molybdenite Separated from the Bainaimiao Copper Deposit, Iner Mongolia and Its Geological Significance. Earth Science Frontiers, 20(4): 361–368 (in Chinese with English Abstract)Google Scholar
  64. Zhou, Z. H., Mao, J. W., Ma, X. H., et al., 2017. Geochronological Framework of the Early Paleozoic Bainaimiao Cu-Mo-Au Deposit, NE China, and Its Tectonic Implications. Journal of Asian Earth Sciences, 144: 323–338.  https://doi.org/10.1016/j.jseaes.2016.11.005 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shenyang CenterChina Geological Survey of GeologicalShenyangChina
  2. 2.College of Earth SciencesJilin UniversityChangchunChina
  3. 3.Shenyang Tests Research CentreNortheast China Coal Field Geology BureauShenyangChina

Personalised recommendations