Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 258–271 | Cite as

Origin of the Fanjingshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization

  • Sifang Huang
  • Wei WangEmail author
Petrogeochemistry and Mineral Deposits
  • 13 Downloads

Abstract

The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements (PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE (PPGE) relative to Ir-subgroup PGE (IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir (11–28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios (545–5 216) and high Cu/Zr ratios (0.4–5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios (8 913–107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE (Os, Ir and Ru) relative to PPGE (Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic Cu-Ni-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.

Key Words

magma differentiation platinum group elements mafic-ultramafic rocks Jiangnan Orogen South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 41572170), “Thousand Youth Talents Plan” grant to Wei Wang and MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR11 and 01-1). We would like to thank Liang Qi and Xiaowen Huang for the PGE analyses. Jian-Feng Gao is thanked for discussion on an early version of this manuscript. The language is polished and improved greatly by Prof. Pandit Manoj. Two anonymous reviewers are thanked for their constructive comments. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-1201-x.

Supplementary material

12583_2018_1201_MOESM1_ESM.xls (32 kb)
Supplementary material, approximately 228 KB.

References Cited

  1. Alard, O., Griffin, W. L., Lorand, J. P., et al., 2000. Non-Chondritic Distribution of the Highly Siderophile Elements in Mantle Sulphides. Nature, 407(6806): 891–894.  https://doi.org/10.1038/35038049 CrossRefGoogle Scholar
  2. Amosse, J., Allibert, M., Fischer, W., et al., 1990. Experimental Study of the Solubility of Platinum and Iridium in Basic Silicate Melts—Implications for the Differentiation of Platinum-Group Elements during Magmatic Processes. Chemical Geology, 81(1/2): 45–53.  https://doi.org/10.1016/0009-2541(90)90038-9 CrossRefGoogle Scholar
  3. Arndt, N., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. Economic Geology, 100: 5–24Google Scholar
  4. Augé, T., Salpeteur, I., Bailly, L., et al., 2002. Magmatic and Hydrothermal Platinum-Group Minerals and Base-Metal Sulfides in the Baula Complex, India. The Canadian Mineralogist, 40(2): 277–309.  https://doi.org/10.2113/gscanmin.40.2.277 CrossRefGoogle Scholar
  5. Barnes, S. J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4): 303–323.  https://doi.org/10.1016/0009-2541(85)90076-2 CrossRefGoogle Scholar
  6. Barnes, S. J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology, 100: 179–213CrossRefGoogle Scholar
  7. Barnes, S. J., Maier, W. D., 1999. The Fractionation of Ni, Cu and the Noble Metals in Silicate and Sulfide Liquids. In: Keays, R. R., Lesher, C. M., Ligthfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration. Geological Society Canada, Short Course Notes, 13: 69–106Google Scholar
  8. BGMRGP (Bureau of Geology and Mineral Resources of Guizhou Province), 1987. Regional Geology of Guizhou Province. Geological Publishing House, Beijing (in Chinese)Google Scholar
  9. Bockrath, C., 2004. Fractionation of the Platinum-Group Elements during Mantle Melting. Science, 305(5692): 1951–1953.  https://doi.org/10.1126/science.1100160 CrossRefGoogle Scholar
  10. Canil, D., 1999. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 63(3/4): 557–572.  https://doi.org/10.1016/s0016-7037(98)00287-7 CrossRefGoogle Scholar
  11. Capobianco, C. J., Drake, M. J., 1990. Partitioning of Ruthenium, Rhodium, and Palladium between Spinel and Silicate Melt and Implications for Platinum Group Element Fractionation Trends. Geochimica et Cosmochimica Acta, 54(3): 869–874.  https://doi.org/10.1016/0016-7037(90)90379-y CrossRefGoogle Scholar
  12. Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2017. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173–194.  https://doi.org/10.1016/j.earscirev.2017.06.001 CrossRefGoogle Scholar
  13. Crocket, J., 2002. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of Platinum-Group Elements. CIM Special, 54: 177–210Google Scholar
  14. Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2): 295–304.  https://doi.org/10.1007/s12583-017-0723-y CrossRefGoogle Scholar
  15. Esser, B. K., Turekian, K. K., 1993. The Osmium Isotopic Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 57(13): 3093–3104.  https://doi.org/10.1016/0016-7037(93)90296-9 CrossRefGoogle Scholar
  16. Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271–281.  https://doi.org/10.1007/s12583-016-0606-7 CrossRefGoogle Scholar
  17. Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012a. Heterogeneous Os Isotope Compositions in the Kalatongke Sulfide Deposit, NW China: The Role of Crustal Contamination. Mineralium Deposita, 47(7): 731–738.  https://doi.org/10.1007/s00126-012-0414-7 CrossRefGoogle Scholar
  18. Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2012b. Origin of PGE-Poor and Cu-Rich Magmatic Sulfides from the Kalatongke Deposit, Xinjiang, Northwest China. Economic Geology, 107(3): 481–506.  https://doi.org/10.2113/econgeo.107.3.481 CrossRefGoogle Scholar
  19. Gao, S., Zhang, B. R., 1990. The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications. Earth Sciences, 15(6): 675–679 (in Chinese with English Abstract)Google Scholar
  20. Ge, W. C., Li, X. H., Liang, X. R., et al., 2001. Geochemistry and Geological Implications of Mafic-Ultramafic Rocks with the Age of ∼825 Ma in Yuanbaoshan-Baotan Area of Northern Guangxi. Geochemica, 30(2): 123–130 (in Chinese with English Abstract)Google Scholar
  21. GRGST (Guizhou Regional Geological Survey Team), 1974. Regional Geological Survey Report of Fanjingshan Area (1: 50 000). Guizhou Regional Geological Survey Team, Beijing (in Chinese)Google Scholar
  22. Handler, M. R., Bennett, V. C., 1999. Behaviour of Platinum-Group Elements in the Subcontinental Mantle of Eastern Australia during Variable Metasomatism and Melt Depletion. Geochimica et Cosmochimica Acta, 63(21): 3597–3618.  https://doi.org/10.1016/s0016-7037(99)00143-x CrossRefGoogle Scholar
  23. Helmy, H. M., El Mahallawi, M. M., 2003. Gabbro Akarem Mafic-Ultramafic Complex, Eastern Desert, Egypt: A Late Precambrian Analogue of Alaskan-Type Complexes. Mineralogy and Petrology, 77(1/2): 85–108.  https://doi.org/10.1007/s00710-001-0185-9 CrossRefGoogle Scholar
  24. Helmy, H. M., Mogessie, A., 2001. Gabbro Akarem, Eastern Desert, Egypt: Cu-Ni-PGE Mineralization in a Concentrically Zoned Mafic-Ultramafic Complex. Mineralium Deposita, 36(1): 58–71.  https://doi.org/10.1007/s001260050286 CrossRefGoogle Scholar
  25. Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93–102.  https://doi.org/10.1007/s12583-018-0821-5 CrossRefGoogle Scholar
  26. Keays, R. R., 1995. The Role of Komatiitic and Picritic Magmatism and S-Saturation in the Formation of Ore Deposits. Lithos, 34(1/2/3): 1–18.  https://doi.org/10.1016/0024-4937(95)90003-9 CrossRefGoogle Scholar
  27. Lesher, C., Stone, W., 1996. Exploration Geochemistry of Komatiites. Geological Association of Canada, Short Course Notes, 12: 153–204Google Scholar
  28. Li, L. M., Lin, S. F., Xing, G. F., et al., 2013. Geochronology and Geochemistry of Volcanic Rocks from the Shaojiwa Formation and Xingzi Group, Lushan Area, SE China: Implications for Neoproterozoic Back-Arc Basin in the Yangtze Block. Precambrian Research, 238: 1–17.  https://doi.org/10.1016/j.precamres.2013.09.016 CrossRefGoogle Scholar
  29. Li, L. M., Lin, S. F., Xing, G. F., et al., 2016. Ca. 830 Ma Back-Arc Type Volcanic Rocks in the Eastern Part of the Jiangnan Orogen: Implications for the Neoproterozoic Tectonic Evolution of South China Block. Precambrian Research, 275: 209–224.  https://doi.org/10.1016/j.precamres.2016.01.016 CrossRefGoogle Scholar
  30. Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850–790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2): 341–357.  https://doi.org/10.1016/j.lithos.2007.04.007 CrossRefGoogle Scholar
  31. Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117–128.  https://doi.org/10.1016/j.precamres.2009.07.004 CrossRefGoogle Scholar
  32. Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma? Precambrian Research, 122(1–4): 45–83CrossRefGoogle Scholar
  33. Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 173(3): 171–181.  https://doi.org/10.1016/s0012-821x(99)00240-x CrossRefGoogle Scholar
  34. Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1): 179–210CrossRefGoogle Scholar
  35. Lightfoot, P. C., Hawkesworth, C. J., 1997. Flood Basalts and Magmatic Ni, Cu, and PGE Sulphide Mineralization: Comparative Geochemistry of the Noril’sk (Siberian Traps) and West Greenland Sequences. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, 100: 357–380Google Scholar
  36. Liu, H., Zhao, J. H., 2018. Neoproterozoic Peraluminous Granitoids in the Jiangnan Fold Belt: Implications for Lithospheric Differentiation and Crustal Growth. Precambrian Research, 309: 152–165CrossRefGoogle Scholar
  37. Liu, Y. Y., Huang, Z. L., Zhu, C. M., 2017. A High Temperature and High Pressure Experimental Study on Re-Bearing Capability of Sulfide. Journal of Earth Science, 28(1): 78–91.  https://doi.org/10.1007/s12583-017-0739-3 CrossRefGoogle Scholar
  38. Locmelis, M., Pearson, N. J., Barnes, S. J., et al., 2011. Ruthenium in Komatiitic Chromite. Geochimica et Cosmochimica Acta, 75(13): 3645–3661.  https://doi.org/10.1016/j.gca.2011.03.041 CrossRefGoogle Scholar
  39. Lorand, J. P., Alard, O., 2001. Platinum-Group Element Abundances in the Upper Mantle: New Constraints from in-situ and Whole-Rock Analyses of Massif Central Xenoliths (France). Geochimica et Cosmochimica Acta, 65(16): 2789–2806.  https://doi.org/10.1016/s0016-7037(01)00627-5 CrossRefGoogle Scholar
  40. Lorand, J. P., Pattou, L., Gros, M., 1999. Fractionation of Platinum-Group Elements and Gold in the Upper Mantle: A Detailed Study in Pyrenean Orogenic Lherzolites. Journal of Petrology, 40(6): 957–981.  https://doi.org/10.1093/petroj/40.6.957 CrossRefGoogle Scholar
  41. Luguet, A., Alard, O., Lorand, J. P., et al., 2001. Laser-Ablation Microprobe (LAM)-ICPMS Unravels the Highly Siderophile Element Geochemistry of the Oceanic Mantle. Earth and Planetary Science Letters, 189(3/4): 285–294.  https://doi.org/10.1016/s0012-821x(01)00357-0 CrossRefGoogle Scholar
  42. Maier, W. D., 2003. The Concentration of the Platinum-Group Elements in South African Komatiites: Implications for Mantle Sources, Melting Regime and PGE Fractionation during Crystallization. Journal of Petrology, 44(10): 1787–1804.  https://doi.org/10.1093/petrology/egg059 CrossRefGoogle Scholar
  43. Mao, J. W., 2002. The 982 Ma Re-Os Age of Copper-Nickel Sulfide Ores in the Baotan Area, Guangxi and Its Geological Significance. Science China Earth Sciences, 45(10): 911–920.  https://doi.org/10.1360/02yd9090 CrossRefGoogle Scholar
  44. Mavrogenes, J. A., O’Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8): 1173–1180.  https://doi.org/10.1016/s0016-7037(98)00289-0 CrossRefGoogle Scholar
  45. Momme, P., Tegner, C., Brooks, K., et al., 2002. The Behaviour of Platinum-Group Elements in Basalts from the East Greenland Rifted Margin. Contributions to Mineralogy and Petrology, 143(2): 133–153.  https://doi.org/10.1007/s00410-001-0338-1 CrossRefGoogle Scholar
  46. Morgan, J. W., 1985. Osmium Isotope Constraints on Earth’s Late Accretionary History. Nature, 317(6039): 703–705.  https://doi.org/10.1038/317703a0 CrossRefGoogle Scholar
  47. Naldrett, A. J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer Science and Business Media, TorontoCrossRefGoogle Scholar
  48. Peach, C. L., Mathez, E. A., Keays, R. R., et al., 1994. Experimentally Determined Sulfide Melt-Silicate Melt Partition Coefficients for Iridium and Palladium. Chemical Geology, 117(1/2/3/4): 361–377.  https://doi.org/10.1016/0009-2541(94)90138-4 CrossRefGoogle Scholar
  49. Peregoedova, A., Barnes, S. J., Baker, D. R., 2006. An Experimental Study of Mass Transfer of Platinum-Group Elements, Gold, Nickel and Copper in Sulfur-Dominated Vapor at Magmatic Temperatures. Chemical Geology, 235(1/2): 59–75.  https://doi.org/10.1016/j.chemgeo.2006.06.004 CrossRefGoogle Scholar
  50. Pettigrew, N. T., Hattori, K. H., 2006. The Quetico Intrusions of Western Superior Province: Neo-Archean Examples of Alaskan/Ural-Type Mafic-Ultramafic Intrusions. Precambrian Research, 149(1/2): 21–42.  https://doi.org/10.1016/j.precamres.2006.06.004 CrossRefGoogle Scholar
  51. Philipp, H., 2001. Platinum-Group Elements (PGE) in Basalts of the Seaward-Dipping Reflector Sequence, SE Greenland Coast. Journal of Petrology, 42(2): 407–432.  https://doi.org/10.1093/petrology/42.2.407 CrossRefGoogle Scholar
  52. Puchtel, I. S., Humayun, M., 2001. Platinum Group Element Fractionation in a Komatiitic Basalt Lava Lake. Geochimica et Cosmochimica Acta, 65(17): 2979–2993.  https://doi.org/10.1016/s0016-7037(01)00642-1 CrossRefGoogle Scholar
  53. Puchtel, I. S., Humayun, M., Campbell, A. J., et al., 2004. Platinum Group Element Geochemistry of Komatiites from the Alexo and Pyke Hill Areas, Ontario, Canada 1 1Associate Editor: R. J. Walker. Geochimica et Cosmochimica Acta, 68(6): 1361–1383.  https://doi.org/10.1016/j.gca.2003.09.013 CrossRefGoogle Scholar
  54. Qi, L., Gao, J. F., Huang, X. W., et al., 2011. An Improved Digestion Technique for Determination of Platinum Group Elements in Geological Samples. Journal of Analytical Atomic Spectrometry, 26(9): 1900–1904.  https://doi.org/10.1039/c1ja10114e CrossRefGoogle Scholar
  55. Qi, L., Zhou, M. F., 2008. Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China. Chemical Geology, 248(1/2): 83–103.  https://doi.org/10.1016/j.chemgeo.2007.11.004 CrossRefGoogle Scholar
  56. Rehkämper, M., Halliday, A. N., Fitton, J. G., et al., 1999. Ir, Ru, Pt, and Pd in Basalts and Komatiites: New Constraints for the Geochemical Behavior of the Platinum-Group Elements in the Mantle. Geochimica et Cosmochimica Acta, 63(22): 3915–3934.  https://doi.org/10.1016/s0016-7037(99)00219-7 CrossRefGoogle Scholar
  57. Righter, K., Campbell, A. J., Humayun, M., et al., 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-Bearing Spinel, Olivine, Pyroxene and Silicate Melts. Geochimica et Cosmochimica Acta, 68(4): 867–880.  https://doi.org/10.1016/j.gca.2003.07.005 CrossRefGoogle Scholar
  58. Ripley, E. M., Lambert, D. D., Frick, L. R., 1998. Re-Os, Sm-Nd, and Pb Isotopic Constraints on Mantle and Crustal Contributions to Magmatic Sulfide Mineralization in the Duluth Complex. Geochimica et Cosmochimica Acta, 62(19/20): 3349–3365.  https://doi.org/10.1016/s0016-7037(98)00235-x CrossRefGoogle Scholar
  59. Saha, A., Manikyamba, C., Santosh, M., et al., 2015. Platinum Group Elements (PGE) Geochemistry of Komatiites and Boninites from Dharwar Craton, India: Implications for Mantle Melting Processes. Journal of Asian Earth Sciences, 105: 300–319.  https://doi.org/10.13039/501100001412 CrossRefGoogle Scholar
  60. Shirey, S. B., Walker, R. J., 1998. The Re-Osisotope System in Cosmochemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1): 423–500.  https://doi.org/10.1146/annurev.earth.26.1.423 CrossRefGoogle Scholar
  61. Song, X. Y., Hu, R. Z., Chen, L. M., 2009. Geochemical Natures of Copper, Nickel and PGE and Their Significance for the Study of Origin and Evolution of Mantle-Derived Magmas and Magmatic Sulfide Deposits. Earth Science Frontiers, 16(4): 287–305 (in Chinese with English Abstract)Google Scholar
  62. Stockman, H. W., Hlava, P. F., 1984. Platinum-Group Minerals in Alpine Chromitites from Southwestern Oregon. Economic Geology, 79(3): 491–508.  https://doi.org/10.2113/gsecongeo.79.3.491 CrossRefGoogle Scholar
  63. Su, J. B., Zhang, Y. Q., Dong, S. W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. Journal of Earth Science, 25(4): 619–629.  https://doi.org/10.1007/s12583-014-0469-8 CrossRefGoogle Scholar
  64. Vogel, D. C., Keays, R. R., James, R. S., et al., 1999. The Geochemistry and Petrogenesis of the Agnew Intrusion, Canada: A Product of S-Undersaturated, High-Al and Low-Ti Tholeiitic Magmas. Journal of Petrology, 40(3): 423–450.  https://doi.org/10.1093/petroj/40.3.423 CrossRefGoogle Scholar
  65. Walker, R. J., Shirey, S. B., Hanson, G. N., et al., 1989. Re-Os, Rb-Sr, and O Isotopic Systematics of the Archean Kolar Schist Belt, Karnataka, India. Geochimica et Cosmochimica Acta, 53(11): 3005–3013.  https://doi.org/10.1016/0016-7037(89)90176-2 CrossRefGoogle Scholar
  66. Wang, C. Y., Zhou, M. F., Keays, R. R., 2006. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 152(3): 309–321.  https://doi.org/10.1007/s00410-006-0103-6 CrossRefGoogle Scholar
  67. Wang, J., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1–4): 141–158.  https://doi.org/10.1016/s0301-9268(02)00209-7 CrossRefGoogle Scholar
  68. Wang, M., Dai, C. G., Wang, X. H., et al., 2011. In-suit Zircon Geochronology and Hf Isotope of Mucscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Cotinental Growth of the Southern China Block. Earth Science Frontiers, 15(5): 213–223 (in Chinese with English Abstract)Google Scholar
  69. Wang, W., Chen, F. K., Hu, R., et al., 2012a. Provenance and Tectonic Setting of Neoproterozoic Sedimentary Sequences in the South China Block: Evidence from Detrital Zircon Ages and Hf-Nd Isotopes. International Journal of Earth Sciences, 101(7): 1723–1744.  https://doi.org/10.1007/s00531-011-0746-z CrossRefGoogle Scholar
  70. Wang, W., Zhou, M. F., Yan, D. P., et al., 2012b. Depositional Age, Provenance, and Tectonic Setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Research, 192(1): 107–124.  https://doi.org/10.1016/j.precamres.2011.10.010 CrossRefGoogle Scholar
  71. Wang, W., Wang, F., Chen, F. K., et al., 2010. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block: Constraints on the Deposition Age and Provenance. The Journal of Geology, 118(1): 79–94.  https://doi.org/10.1086/648533 CrossRefGoogle Scholar
  72. Wang, W., Zhao, J. H., Zhou, M. F., et al., 2014. Neoproterozoic Mafic-Ultramafic Intrusions from the Fanjingshan Region, South China: Implications for Subduction-Related Magmatism in the Jiangnan Fold Belt. The Journal of Geology, 122(4): 455–473.  https://doi.org/10.1086/676596 CrossRefGoogle Scholar
  73. Wang, W., Zhao, J. H., Zhou, M. F., et al., 2018. Depositional Age, Provenance Characteristics and Tectonic Setting of the Meso- And Neoproterozoic Sequences in SE Yangtze Block, China: Implications on Proterozoic Supercontinent Reconstructions. Precambrian Research, 309: 231–247.  https://doi.org/10.1016/j.precamres.2017.11.012 CrossRefGoogle Scholar
  74. Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1–19.  https://doi.org/10.1016/j.precamres.2013.05.013 CrossRefGoogle Scholar
  75. Wang, X. C., Li, X. H., Li, W. X., et al., 2007. Ca. 825 Ma Komatiitic Basalts in South China: First Evidence for >1 500 °C Mantle Melts by a Rodinian Mantle Plume. Geology, 35(12): 1103–1106.  https://doi.org/10.1130/g23878a.1 CrossRefGoogle Scholar
  76. Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2004. Geochemistry of the Meso-To Neoproterozoic Basic-Acid Rocks from Hunan Province, South China: Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Research, 135(1/2): 79–103.  https://doi.org/10.1016/j.precamres.2004.07.006 CrossRefGoogle Scholar
  77. Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1/2): 111–130.  https://doi.org/10.1016/j.precamres.2005.11.014 CrossRefGoogle Scholar
  78. Wood, S., 2002. The Aqueous Geochemistry of the Platinum-Group Elements with Applications to Ore Deposits. The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, 54: 211–249Google Scholar
  79. Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4): 179–212.  https://doi.org/10.1016/j.precamres.2006.01.012 CrossRefGoogle Scholar
  80. Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56–87.  https://doi.org/10.1016/j.precamres.2017.02.020 CrossRefGoogle Scholar
  81. Xie, H., Zhang, H., 2009. Significance and Characteristic of Muscovite Granites in Fanjingshan Area. Guizhou Geology, 26(4): 243–247 (in Chinese with English Abstract)Google Scholar
  82. Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820–800 Ma Magmatic Rocks. Precambrian Research, 294: 91–110.  https://doi.org/10.1016/j.precamres.2017.03.018 CrossRefGoogle Scholar
  83. Xue, H. M., Ma, F., Song, Y. Q., 2012. Mafic-Ultramafic Rocks from the Fanjingshan Region, Southwestern Margin of the Jiangnan Orogenic Belt: Ages, Geochemical Characteristics and Tectonic Setting. Acta Petrologica Sinica, 28(9): 3015–3030 (in Chinese with English Abstract)Google Scholar
  84. Yang, C., Li, X. H., Wang, X. C., et al., 2015. Mid-Neoproterozoic Angular Unconformity in the Yangtze Block Revisited: Insights from Detrital Zircon U-PbAge and Hf-O Isotopes. Precambrian Research, 266: 165–178.  https://doi.org/10.13039/501100002855 CrossRefGoogle Scholar
  85. Yang, S. H., Zhou, M. F., Lightfoot, P. C., et al., 2012. Selective Crustal Contamination and Decoupling of Lithophile and Chalcophile Element Isotopes in Sulfide-Bearing Mafic Intrusions: An Example from the Jingbulake Intrusion, Xinjiang, NW China. Chemical Geology, 302–303: 106–118.  https://doi.org/10.1016/j.chemgeo.2011.10.019 CrossRefGoogle Scholar
  86. Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243: 39–62.  https://doi.org/10.1016/j.precamres.2013.12.027 CrossRefGoogle Scholar
  87. Yao, J. L., Shu, L. S., Santosh, M., et al., 2015. Neoproterozoic Arc-Related Andesite and Orogeny-Related Unconformity in the Eastern Jiangnan Orogenic Belt: Constraints on the Assembly of the Yangtze and Cathaysia Blocks in South China. Precambrian Research, 262: 84–100.  https://doi.org/10.1016/j.precamres.2013.12.027 CrossRefGoogle Scholar
  88. Yin, C. Q., Lin, S. F., Davis, D. W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Research, 236: 145–156.  https://doi.org/10.1016/j.precamres.2013.07.022 CrossRefGoogle Scholar
  89. Zhang, H., Wang, M., Zheng, Q. Q., 2008. The Character and Its Significance of Magnesio-Ferri-Ultramagnesio-Ferri Irruptive Rock in Fanjingshan Mountain Area. Guizhou Geology, 25: 161–165 (in Chinese with English Abstract)Google Scholar
  90. Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220–221: 45–64.  https://doi.org/10.1016/j.precamres.2012.07.010 CrossRefGoogle Scholar
  91. Zhang, S. B., Zheng, Y. F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241–1260.  https://doi.org/10.13039/501100002855 CrossRefGoogle Scholar
  92. Zhang, Y. Z., Wang, Y. J., Zhang, Y. H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269: 18–30.  https://doi.org/10.1016/j.precamres.2015.08.003 CrossRefGoogle Scholar
  93. Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222–223: 13–54.  https://doi.org/10.1016/j.precamres.2012.09.017 CrossRefGoogle Scholar
  94. Zhao, J. H., Asimow, P. D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chemical Geology, 388: 98–111.  https://doi.org/10.1016/j.chemgeo.2014.09.004 CrossRefGoogle Scholar
  95. Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47.  https://doi.org/10.1016/j.precamres.2006.09.002 CrossRefGoogle Scholar
  96. Zhao, J. H., Zhou, M. F., 2013. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China. Precambrian Research, 233: 193–205.  https://doi.org/10.1016/j.precamres.2013.04.017 CrossRefGoogle Scholar
  97. Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299–302.  https://doi.org/10.1130/g31701.1 CrossRefGoogle Scholar
  98. Zheng, L., Zhi, X. C., Reisberg, L., 2009. Re-Os Systematics of the Raobazhai Peridotite Massifs from the Dabie Orogenic Zone, Eastern China. Chemical Geology, 268(1/2): 1–14.  https://doi.org/10.1016/j.chemgeo.2009.06.021 CrossRefGoogle Scholar
  99. Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351–383.  https://doi.org/10.1016/j.precamres.2008.01.004 CrossRefGoogle Scholar
  100. Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189–1206.  https://doi.org/10.13039/501100002855 CrossRefGoogle Scholar
  101. Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27–42.  https://doi.org/10.1016/j.precamres.2008.11.002 CrossRefGoogle Scholar
  102. Zhou, J. C., Wang, X. L., Qiu, J. S., 2008. Is the Jiangnan Orogenic Belt a Grenvillian Orogenic Belt: Some Problems about the Precambrian Geology of South China. Geological Journal of China Universities, 14(1): 64–72 (in Chinese with English Abstract)Google Scholar
  103. Zhou, M. F., 1994. PGE Distribution in 2.7-Ga Layered Komatiite Flows from the Belingwe Greenstone Belt, Zimbabwe. Chemical Geology, 118(1–4): 155–172.  https://doi.org/10.1016/0009-2541(94)90174-0 CrossRefGoogle Scholar
  104. Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites: A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4): 677–688.  https://doi.org/10.1016/s0016-7037(97)00382-7 CrossRefGoogle Scholar
  105. Zhou, M. F., Zhao, X. F., Chen, W. T., et al., 2014. Proterozoic Fe-Cu Metallogeny and Supercontinental Cycles of the Southwestern Yangtze Block, Southern China and Northern Vietnam. Earth-Science Reviews, 139: 59–82.  https://doi.org/10.1016/j.earscirev.2014.08.013 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations