Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 376–386 | Cite as

Molecular and Isotopic Characteristics of Mature Condensates from the East China Sea Shelf Basin Using GC×GC-TOFMS and GC-IRMS

  • Chao Shan
  • Jiaren YeEmail author
  • Alan Scarlett
  • Kliti Grice
Petroleum, Natural Gas Geology

Abstract

In this study, biomarkers, together with stable carbon (δ13C) and hydrogen (δD) isotopic compositions of n-alkanes have been examined in a suite of condensates collected from the East China Sea Shelf Basin (ECSSB) in order to delineate their source organic matter input, depositional conditions and evaluate their thermal maturity. Previously, GC-MS analyses have shown that all the condensates are formed in oxidizing environment with terrestrial plants as their main source input. No significant differences were apparent for biomarker parameters, likely due to the low biomarker content and high maturity of these condensates. Conventional GC-MS analysis however, may provides limited information on the sources and thermal maturity of complex mixtures due to insufficient component resolution. In the current study, we used comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to increase the chromatographic resolution. Compounds such as alkyl cyclohexanes, alkyl cyclopentanes and diamondoids, which can be difficult to identify using conventional GC-MS analysis, were successfully identified using GC×GC-TOFMS. From our analyses we propose two possibly unreported indicators, including one maturity indicator (C5-cyclohexane/5+-cyclohexane) and one oxidation-reduction environment indicator (alkyl-cyclohexane/alkyl-cyclopentane). Multiple petroleum charging events were proposed as an explanation for the maturity indicators indexes discrepancy between methyl-phenanthrene index (MPI) and methyl-adamantane index (MDI). In addition, the stable isotopic results show that condensates from the Paleogene have significantly higher positive δ13C values of individual n-alkanes than the Neogene samples. Based on δD values, the samples can be divided into two groups, the differences between which are likely to be attributed to different biosynthetic precursors. Variation within each group can likely be attributed to vaporization.

Key Words

condensate biomarker characteristic source information GC×GC-TOFMS GC-IRMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was sponsored by the National Science and Technology Major Project of China (Nos. 2016ZX05024-002-003, 2016ZX05027-001-005). The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-1001-3.

References Cited

  1. Aguiar, A., Aguiar, H. G. M., Azevedo, D. A., et al., 2011. Identification of Methylhopane and Methylmoretane Series in Ceará Basin Oils, Brazil, Using Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. Energy & Fuels, 25(3): 1060–1065.  https://doi.org/10.1021/ef1013659 CrossRefGoogle Scholar
  2. Aguiar, A., Silva, A. I., Azevedo, D. A., et al., 2010. Application of Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry to Biomarker Characterization in Brazilian Oils. Fuel, 89(10): 2760–2768.  https://doi.org/10.1016/j.fuel.2010.05.022 CrossRefGoogle Scholar
  3. Bray, E. E., Evans, E. D., 1961. Distribution of N-Paraffins as a Clue to Recognition of Source Beds. Geochimica et Cosmochimica Acta, 22(1): 2–15.  https://doi.org/10.1016/0016-7037(61)90069-2 CrossRefGoogle Scholar
  4. Chen, J. H., Fu, J. M., Sheng, G. Y., et al., 1996. Diamondoid Hydrocarbon Ratios: Novel Maturity Indices for Highly Mature Crude Oils. Organic Geochemistry, 25(3/4): 179–190.  https://doi.org/10.1016/s0146-6380(96)00125-8 CrossRefGoogle Scholar
  5. Chikaraishi, Y., Naraoka, H., 2007. Δ13C and ΔD Relationships among Three n-Alkyl Compound Classes (n-Alkanoic Acid, n-Alkane and n-Alkanol) of Terrestrial Higher Plants. Organic Geochemistry, 38(2): 198–215.  https://doi.org/10.1016/j.orggeochem.2006.10.003 CrossRefGoogle Scholar
  6. Cukur, D., Horozal, S., Lee, G. H., et al., 2012. Timing of Trap Formation and Petroleum Generation in the Northern East China Sea Shelf Basin. Marine and Petroleum Geology, 36(1): 154–163.  https://doi.org/10.1016/j.marpetgeo.2012.04.009 CrossRefGoogle Scholar
  7. Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54–57.  https://doi.org/10.1038/19953 CrossRefGoogle Scholar
  8. Dai, L. M., Li, S. Z., Lou, D., et al., 2014. Numerical Modeling of Late Miocene Tectonic Inversion in the Xihu Sag, East China Sea Shelf Basin, China. Journal of Asian Earth Sciences, 86: 25–37.  https://doi.org/10.1016/j.jseaes.2013.09.033 CrossRefGoogle Scholar
  9. Dawson, D., Grice, K., Alexander, R., 2005. Effect on Maturation on the Indigenous ΔD Signatures of Individual Hydrocarbons in Sediments and Crude Oils from the Perth Basin (Western Australia). Organic Geochemistry, 36(1): 95–104.  https://doi.org/10.1016/j.orggeochem.2004.06.020 CrossRefGoogle Scholar
  10. Dawson, D., Grice, K., Alexander, R., et al., 2007. The Effect of Source and Maturity on the Stable Isotopic Compositions of Individual Hydrocarbons in Sediments and Crude Oils from the Vulcan Sub-Basin, Timor Sea, Northern Australia. Organic Geochemistry, 38(7): 1015–1038.  https://doi.org/10.1016/j.orggeochem.2007.02.018 CrossRefGoogle Scholar
  11. de Rosa, M., Gambacorta, A., Minale, L., et al., 1972. The Formation of Ω-Cyclohexyl-Fatty Acids from Shikimate in an Acidophilic Thermophilic Bacillus. A New Biosynthetic Pathway. Biochemical Journal, 128(4): 751–754.  https://doi.org/10.1042/bj1280751 CrossRefGoogle Scholar
  12. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Paleoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216–222.  https://doi.org/10.1038/272216a0 CrossRefGoogle Scholar
  13. Fowler, M. G., Abolins, P., Douglas, A. G., 1986. Monocyclic Alkanes in Ordovician Organic Matter. Organic Geochemistry, 10(4–6): 815–823.  https://doi.org/10.1016/s0146-6380(86)80018-3 CrossRefGoogle Scholar
  14. Freeman, K. H., Hayes, J. M., Trendel, J. M., et al., 1990. Evidence from Carbon Isotope Measurements for Diverse Origins of Sedimentary Hydrocarbons. Nature, 343(6255): 254–256.  https://doi.org/10.1038/343254a0 CrossRefGoogle Scholar
  15. Grice, K., Mesmay, R. D., Glucina, A., et al., 2008. An Improved and Rapid 5A Molecular Sieve Method for Gas Chromatography Isotope Ratio Mass Spectrometry of n-Alkanes (C8−C30 +). Organic Geochemistry, 39(3): 284–288.  https://doi.org/10.1016/j.orggeochem.2007.12.009 CrossRefGoogle Scholar
  16. Hayes, J. M., Freeman, K. H., Popp, B. N., et al., 1990. Compound-Specific Isotopic Analysis: A Novel Tool for Reconstruction of Ancient Biogeochemical Processes. Organic Geochemistry, 16(4–6): 1115–1128.  https://doi.org/10.1016/0146-6380(90)90147-r CrossRefGoogle Scholar
  17. Hayes, J. M., Takigiku, R., Ocampo, R., et al., 1987. Isotopic Composition and Probable Origins of Organic Molecules in the Eocene Messel Shale. Nature, 329(6134): 48–51.  https://doi.org/10.1038/329048a0 CrossRefGoogle Scholar
  18. Inaba, T., Suzuki, N., 2003. Gel Permeation Chromatography for Fractionation and Isotope Ratio Analysis of Steranes and Triterpanes in Oils. Organic Geochemistry, 34(4): 635–641.  https://doi.org/10.1016/s0146-6380(03)00017-2 CrossRefGoogle Scholar
  19. Johns, R. B., Belsky, T., McCarthy, E. D., et al., 1966. The Organic Geochemistry of Ancient Sediments II. Geochimica et Cosmochimica Acta, 30(12): 1191–1222.  https://doi.org/10.1016/0016-7037(66)90120-7 CrossRefGoogle Scholar
  20. Kikuchi, T., Suzuki, N., Saito, H., 2010. Change in Hydrogen Isotope Composition of N-Alkanes, Pristane, Phytane, and Aromatic Hydrocarbons in Miocene Siliceous Mudstones with Increasing Maturity. Organic Geochemistry, 41(9): 940–946.  https://doi.org/10.1016/j.orggeochem.2010.05.004 CrossRefGoogle Scholar
  21. Li, C. F., Zhou, Z., Ge, H., et al., 2009. Rifting Process of the Xihu Depression, East China Sea Basin. Tectonophysics, 472(1–4): 135–147.  https://doi.org/10.1016/j.tecto.2008.04.026 CrossRefGoogle Scholar
  22. Li, M. W., Riediger, C. L., Fowler, M. G., et al., 1997. Unusual Polycyclic Aromatic Hydrocarbons in the Lower Cretaceous Ostracode Zone Sedimentary and Related Oils of the Western Canada Sedimentary Basin. Organic Geochemistry, 27(7/8): 439–448.  https://doi.org/10.1016/s0146-6380(97)00026-0 CrossRefGoogle Scholar
  23. Li, S. F., Hu, S. Z., Cao, J., et al., 2012. Diamondoid Characterization in Condensate by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry: The Junggar Basin of Northwest China. International Journal of Molecular Sciences, 13(9): 11399–11410.  https://doi.org/10.3390/ijms130911399 CrossRefGoogle Scholar
  24. Li, Y., Xiong, Y., Chen, Y., et al., 2014. The Effect of Evaporation on the Concentration and Distribution of Diamondoids in Oils. Organic Geochemistry, 69: 88–97.  https://doi.org/10.1016/j.orggeochem.2014.02.007 CrossRefGoogle Scholar
  25. Matthews, D. E., Hayes, J. M., 1978. Isotope-Ratio-Monitoring Gas Chromatography Mass Spectrometry. Analytical Chemistry, 50(11): 1465–1473.  https://doi.org/10.1021/ac50033a022 CrossRefGoogle Scholar
  26. Moldowan, J. M., Seifer, W. K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. American Association of Petroleum Geologists Bulletin, 69: 1255–1268.Google Scholar
  27. Oshima, M., Ariga, T., 1975. Cyclohexy1 Fatty Acids in Acidophilic Thermophilic Bacteria. Journal of Biology Chemistry, 250: 6963–6968.Google Scholar
  28. Pedentchouk, N., Freeman, K. H., Harris, N. B., 2006. Different Response of δD Values of n-Alkanes, Isoprenoids, and Kerogen during Thermal Maturation. Geochimica et Cosmochimica Acta, 70(8): 2063–2072.  https://doi.org/10.1016/j.gca.2006.01.013 CrossRefGoogle Scholar
  29. Powell, T. G., McKirdy, D. M., 1973. Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia. Nature, 243(124): 37–39.  https://doi.org/10.1038/physci243037a0 Google Scholar
  30. Radke, J., Bechtel, A., Gaupp, R., et al., 2005. Correlation between Hydrogen Isotope Ratios of Lipid Biomarkers and Sediment Maturity. Geochimica et Cosmochimica Acta, 69(23): 5517–5530.  https://doi.org/10.1016/j.gca.2005.07.014 CrossRefGoogle Scholar
  31. Rubinstein, I., Strausz, O. P., 1979. Geochemistry of the Thiourea Adduct Fraction from an Alberta Petroleum. Geochimica et Cosmochimica Acta, 43(8): 1387–1392.  https://doi.org/10.1016/0016-7037(79)90129-7 CrossRefGoogle Scholar
  32. Schaeffer, P., Poinsot, J., Hauke, V., et al., 1994. Novel Optically Active Hydrocarbons in Sediments: Evidence for an Extensive Biological Cyclization of Higher Regular Polyphenols. Angewandte Chemie, 33(11): 1166–1169.  https://doi.org/10.1002/anie.199411661 CrossRefGoogle Scholar
  33. Schimmelmann, A., Sessions, A., Boreham, C. J., et al., 2004. D/H Ratios in Terrestrially Sourced Petroleum Systems. Organic Geochemistry, 35(10): 1169–1195.  https://doi.org/10.1016/j.orggeochem.2004.05.006 CrossRefGoogle Scholar
  34. Seifert, W. K., Moldowan, J. M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, 24: 261–290.Google Scholar
  35. Spiro, B., 1984. Effects of the Mineral Matrix on the Distribution of Geochemical Markers in Thermally Affected Sedimentary Sequences. Organic Geochemistry, 6: 543–559.  https://doi.org/10.1016/0146-6380(84)90077-9 CrossRefGoogle Scholar
  36. Tang, Y. C., Huang, Y. S., Ellis, G. S., et al., 2005. A Kinetic Model for Thermally Induced Hydrogen and Carbon Isotope Fractionation of Individual n-Alkanes in Crude Oil. Geochimica et Cosmochimica Acta, 69(18): 4505–4520.  https://doi.org/10.1016/j.gca.2004.12.026 CrossRefGoogle Scholar
  37. Triwahyono, S., Abdul, J. A., Shamsuddin, M., et al., 2005. Isomerization of Cyclohexane to Methylcyclopentane over Pt/sulfate-ZrO2 Catalyst. 2nd International Conference on Chemical and Bioprocess Engineering, SabahGoogle Scholar
  38. Ventura, G. T., Raghuraman, B., Nelson, R. K., et al., 2010. Compound Class Oil Fingerprinting Techniques Using Comprehensive Two-Dimensional Gas Chromatography (GC×GC). Organic Geochemistry, 41(9): 1026–1035.  https://doi.org/10.1016/j.orggeochem.2010.02.014 CrossRefGoogle Scholar
  39. Ventura, G. T., Simoneit, B. R. T., Nelson, R. K., et al., 2012. The Composition, Origin and Fate of Complex Mixtures in the Maltene Fractions of Hydrothermal Petroleum Assessed by Comprehensive Two-Dimensional Gas Chromatography. Organic Geochemistry, 45: 48–65.  https://doi.org/10.1016/j.orggeochem.2012.01.002 CrossRefGoogle Scholar
  40. Wang, T. G., Zhong, N. N., Huo, D. J., et al., 1997. Several Genetic Mechanisms of Immature Crude Oils in China. Acta Sedimentologica Sinica, 2: 75–83. (in Chinese with English Abstract)Google Scholar
  41. Wang, Y., Huang, Y., 2003. Hydrogen Isotopic Fractionation of Petroleum Hydrocarbons during Vaporization: Implications for Assessing Artificial and Natural Remediation of Petroleum Contamination. Applied Geochemistry, 18(10): 1641–1651.  https://doi.org/10.1016/s0883-2927(03)00076-3 CrossRefGoogle Scholar
  42. Wei, Z. B, Moldowan, J. M., Jarvie, D. M., et al., 2006. The Fate of Diamondoids in Coals and Sedimentary Rocks. Geology, 34(12): 1013–1023.  https://doi.org/10.1130/g22840a.1 CrossRefGoogle Scholar
  43. Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking: Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2): 227–249.  https://doi.org/10.1016/j.orggeochem.2006.09.011 CrossRefGoogle Scholar
  44. Williams, J. A., Dolcater, D. L., Torkelson, B. E., et al., 1988. Anomalous Concentrations of Specific Alkylaromatic and Alkylcycloparaff in Components in West Texas and Michigan Crude Oils. Organic Geochemistry, 13(1–3): 47–60.  https://doi.org/10.1016/0146-6380(88)90024-1 CrossRefGoogle Scholar
  45. Yang, S. C., Hu, S. B., Cai, D. S., et al., 2004. Present-Day Heat Flow, Thermal History and Tectonic Subsidence of the East China Sea Basin. Marine and Petroleum Geology, 21(9): 1095–1105.  https://doi.org/10.1016/j.marpetgeo.2004.05.007 CrossRefGoogle Scholar
  46. Ye, J. R., Chen, H. H., Chen, J. Y., et al., 2006. Fluid History Analysis in the Xihu Depression, East China Sea. Natural Gas Industry, 26(9): 40–43. (in Chinese with English Abstract)Google Scholar
  47. Zhu, C. S., Zhao, H., Wang, P. R., et al., 2003. The Distribution and Carbon Isotopic Composition of Unusual Polycyclic Alkanes in the Cretaceous Lengshuiwu Formation, China. Organic Geochemistry, 34(7): 1027–1035.  https://doi.org/10.1016/s0146-6380(03)00037-8 CrossRefGoogle Scholar
  48. Zhu, Y., Li, Y., Zhou, J., et al., 2012. Geochemical Characteristics of Tertiary Coal-Bearing Source Rocks in Xihu Depression, East China Sea Basin. Marine and Petroleum Geology, 35(1): 154–165.  https://doi.org/10.1016/j.marpetgeo.2012.01.005 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tectonics and Petroleum Resources of Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.WA Organic and Isotope Geochemistry Centre, and John de Laeter Centre, the Institute for Geoscience Research, Department of Applied ChemistryCurtin University of TechnologyPerthAustralia

Personalised recommendations