Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 397–406 | Cite as

Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China

  • Ying Xu
  • Hongmei WangEmail author
  • Xing Xiang
  • Ruicheng Wang
  • Wen Tian
Biogeology and Marine Geology
  • 4 Downloads

Abstract

To investigate the vertical variation of microbial functional groups particular nitrogen fixers and ammonia oxidizers, sediment samples from a 155 cm deep peat profile were collected from the acidic Dajiuhu Peatland and subsequently subjected to clone library construction and quantification. Results showed that nifH gene abundance varied between 105–108 copies per gram dry sediment and reduced gradually with depth. The abundances of ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) abundance were generally comparable in each sample. More AOA was observed with a depth ≤55 cm, whereas AOB was more abundant with a depth >55 cm. Phylogenetically nifH could be divided into 94 OTUs which mainly affiliated with α-Proteobacteria. AOA were affiliated with Nitrosotalea from Group 1.1a associated (nearly 90%) and Nitrososphaera from Group I.1b. All AOB belonged to Nitrosospira. Notably, DJH11 with the depth of 50–55 cm was observed to have the highest abundance and the highest diversity of nitrogen fixers and ammonia oxidizers among all the samples. Pearson’s correlation analysis showed a positive relationship between water content and pH with the nifH gene abundance. Our results offer the first insight about the microbial community composition and diversity involved in nitrogen cycles in the Dajiuhu Peatland.

Key Words

nifH amoA acidic sediment profile abundance community structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41572325). The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0982-2.

References Cited

  1. Barron, A. R., Wurzburger, N., Bellenger, J. P., et al., 2009. Molybdenum Limitation of Asymbiotic Nitrogen Fixation in Tropical Forest Soils. Nature Geoscience, 2(1): 42–45.  https://doi.org/10.1038/ngeo366 Google Scholar
  2. Basilier, K., Granhall, U., Stenström, T. A., et al., 1978. Nitrogen Fixation in Wet Minerotrophic Moss Communities of a Subarctic Mire. Oikos, 31(2): 236–246.  https://doi.org/10.2307/3543568 Google Scholar
  3. Bellenger, J. P., Wichard, T., Xu, Y., et al., 2011. Essential Metals for Nitrogen Fixation in a Free-Living N2-Fixing Bacterium: Chelation, Homeostasis and High Use Efficiency. Environmental Microbiology, 13(6): 1395–1411.  https://doi.org/10.1111/j.1462-2920.2011.02440.x Google Scholar
  4. Bellenger, J. P., Xu, Y., Zhang, X., et al., 2014. Possible Contribution of Alternative Nitrogenases to Nitrogen Fixation by Asymbiotic N2-Fixing Bacteria in Soils. Soil Biology and Biochemistry, 69: 413–420.  https://doi.org/10.1016/j.soilbio.2013.11.015 Google Scholar
  5. Bernot, M. J., Dodds, W. K., 2005. Nitrogen Retention, Removal, and Saturation in Lotic Ecosystems. Ecosystems, 8(4): 442–453.  https://doi.org/10.1007/s10021-003-0143-y Google Scholar
  6. Berthrong, S. T., Yeager, C. M., Gallegos-Graves, L., et al., 2014. Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2. Applied and Environmental Microbiology, 80(10): 3103–3112.  https://doi.org/10.1128/aem.04034-13 Google Scholar
  7. Bobbink, R., Hicks, K., Galloway, J., et al., 2010. Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecological Applications, 20(1): 30–59.  https://doi.org/10.1890/08-1140.1 Google Scholar
  8. Bragina, A., Berg, C., Müller, H., et al., 2013. Insights into Functional Bacterial Diversity and Its Effects on Alpine Bog Ecosystem Functioning. Scientific Reports, 3(1): 1995.  https://doi.org/10.1038/srep01955 Google Scholar
  9. Bragina, A., Maier, S., Berg, C., et al., 2012. Similar Diversity of Alphaproteobacteria and Nitrogenase Gene Amplicons on Two Related Sphagnum Mosses. Frontiers in Microbiology, 2: 275.  https://doi.org/10.3389/fmicb.2011.00275 Google Scholar
  10. Chen, X., Zhang, L. M., Shen, J. P., et al., 2011. Abundance and Community Structure of Ammonia-Oxidizing Archaea and Bacteria in an Acid Paddy Soil. Biology and Fertility of Soils, 47(3): 323–331.  https://doi.org/10.1007/s00374-011-0542-8 Google Scholar
  11. Cláudio, A. N., 2016. Microbial Ecology: Do It Yourself Nitrification. Nature Reviews Microbiology, 14(2): 61–61.  https://doi.org/10.1038/nrmicro.2015.20 Google Scholar
  12. Coelho, M. R. R., de Vos, M., Carneiro, N. P., et al., 2008. Diversity of nifH Gene Pools in the Rhizosphere of Two Cultivars of Sorghum (Sorghum Bicolor) Treated with Contrasting Levels of Nitrogen Fertilizer. FEMS Microbiology Letters, 279(1): 15–22.  https://doi.org/10.1111/j.1574-6968.2007.00975.x Google Scholar
  13. Daims, H., Lebedeva, E. V., Pjevac, P., et al., 2015. Complete Nitrification by Nitrospira Bacteria. Nature, 528(7583): 504–509.  https://doi.org/10.1038/nature16461 Google Scholar
  14. Dang, H. Y., Yang, J. Y., Li, J., et al., 2013. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea. Applied and Environmental Microbiology, 79(1): 121–132.  https://doi.org/10.1128/aem.01889-12 Google Scholar
  15. de la Torre, J. R., Walker, C. B., Ingalls, A. E., et al., 2008. Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol. Environmental Microbiology, 10(3): 810–818.  https://doi.org/10.1111/j.1462-2920.2007.01506.x Google Scholar
  16. Drenovsky, R. E., Vo, D., Graham, K. J., et al., 2004. Soil Water Content and Organic Carbon Availability are Major Determinants of Soil Microbial Community Composition. Microbial Ecology, 48(3): 424–430.  https://doi.org/10.1007/s00248-003-1063-2 Google Scholar
  17. Francis, C. A., Roberts, K. J., Beman, J. M., et al., 2005. Ubiquity and Diversity of Ammonia-Oxidizing Archaea in Water Columns and Sediments of the Ocean. Proceedings of the National Academy of Sciences, 102(41): 14683–14688.  https://doi.org/10.1073/pnas.0506625102 Google Scholar
  18. Frijlink, M. J., Abee, T., Laanbroek, H. J., et al., 1992. The Bioenergetics of Ammonia and Hydroxylamine Oxidation in Nitrosomonas Europaea at Acid and Alkaline pH. Archives of Microbiology, 157(2): 194–199.  https://doi.org/10.1007/bf00245290 Google Scholar
  19. Gaby, J. C., Buckley, D. H., 2012. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLoS ONE, 7(7): e42149.  https://doi.org/10.1371/journal.pone.0042149 Google Scholar
  20. Hatzenpichler, R., 2012. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea. Applied and Environmental Microbiology, 78(21): 7501–7510.  https://doi.org/10.1128/aem.01960-12 Google Scholar
  21. Hatzenpichler, R., Lebedeva, E. V., Spieck, E., et al., 2008. A Moderately Thermophilic Ammonia-Oxidizing Crenarchaeote from a Hot Spring. Proceedings of the National Academy of Sciences, 105(6): 2134–2139.  https://doi.org/10.1073/pnas.0708857105 Google Scholar
  22. Hayden, H. L., Drake, J., Imhof, M., et al., 2010. The Abundance of Nitrogen Cycle Genes AmoA and nifH Depends on Land-Uses and Soil Types in South-Eastern Australia. Soil Biology and Biochemistry, 42(10): 1774–1783.  https://doi.org/10.1016/j.soilbio.2010.06.015 Google Scholar
  23. He, J. Z., Shen, J. P., Zhang, L. M., et al., 2007. Quantitative Analyses of the Abundance and Composition of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea of a Chinese Upland Red Soil under Long-Term Fertilization Practices. Environmental Microbiology, 9(9): 2364–2374.  https://doi.org/10.1111/j.1462-2920.2007.01358.x Google Scholar
  24. Jiang, H. C., Dong, H. L., Yu, B. S., et al., 2009. Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 26(3): 199–211.  https://doi.org/10.1080/01490450902744004 Google Scholar
  25. Kang, W., Tai, X., Li, S., et al., 2013. Research on the Number of Nitrogen-Fixing Microorganism and Community Structure of Nitrogen-Fixing (nifH) Genes in the Alkali Soils of Alpine Steppe in the Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 208–216. (in Chinese with English Abstract)Google Scholar
  26. Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nature Geoscience, 3(9): 617–621.  https://doi.org/10.1038/ngeo939 Google Scholar
  27. Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., et al., 2017. Kinetic Analysis of a Complete Nitrifier Reveals an Oligotrophic Lifestyle. Nature, 549(7671): 269–272.  https://doi.org/10.1038/nature23679 Google Scholar
  28. Kostka, J. E., Weston, D. J., Glass, J. B., et al., 2016. The Sphagnum Microbiome: New Insights from an Ancient Plant Lineage. New Phytologist, 211(1): 57–64.  https://doi.org/10.13039/100006132 Google Scholar
  29. Kowalchuk, G. A., Stephen, J. R., et al., 2001. Ammonia-Oxidizing Bacteria: A Model for Molecular Microbial Ecology. Annual Review of Microbiology, 55(1): 485–529.  https://doi.org/10.1146/annurev.micro.55.1.485 Google Scholar
  30. Larmola, T., Leppanen, S. M., Tuittila, E. S., et al., 2014. Methanotrophy Induces Nitrogen Fixation during Peatland Development. Proceedings of the National Academy of Sciences, 111(2): 734–739.  https://doi.org/10.1073/pnas.1314284111 Google Scholar
  31. Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., et al., 2011. Cultivation of an Obligate Acidophilic Ammonia Oxidizer from a Nitrifying Acid Soil. Proceedings of the National Academy of Sciences, 108(38): 15892–15897.  https://doi.org/10.1073/pnas.1107196108 Google Scholar
  32. Leppänen, S. M., Rissanen, A. J., Tiirola, M., 2014. Nitrogen Fixation in Sphagnum Mosses is Affected by Moss Species and Water Table Level. Plant and Soil, 389(1/2): 185–196.  https://doi.org/10.1007/s11104-014-2356-6 Google Scholar
  33. Liebner, S., Svenning, M. M., 2013. Environmental Transcription of mmoX by Methane-Oxidizing Proteobacteria in a Subarctic Palsa Peatland. Applied and Environmental Microbiology, 79(2): 701–706.  https://doi.org/10.1128/aem.02292-12 Google Scholar
  34. Limpens, J., Heijmans, M. M., Berendse, F., 2006. The Nitrogen Cycle in Boreal Peatlands. Boreal Peatland Ecosystems, 188: 195–230.  https://doi.org/10.1007/978-3-540-31913-9_10 Google Scholar
  35. Liu, Z. H., Huang, S. B., Sun, G. P., et al., 2011. Diversity and Abundance of Ammonia-Oxidizing Archaea in the Dongjiang River, China. Microbiological Research, 166(5): 337–345.  https://doi.org/10.13039/501100001809 Google Scholar
  36. Lu, L., Han, W. Y., Zhang, J. B., et al., 2012. Nitrification of Archaeal Ammonia Oxidizers in Acid Soils is Supported by Hydrolysis of Urea. The ISME Journal, 6(10): 1978–1984.  https://doi.org/10.1038/ismej.2012.45 Google Scholar
  37. Luo, L., Wang, Z., Mao, D., et al., 2016. Connotation and Differentiation of Terminology on Main Kinds of Wetlands in English. Chinese Journal of Ecology, 35(3): 834–842. (in Chinese with English Abstract)Google Scholar
  38. Mary, A. B., Stephen, J. R., Kowalchuk, G. A., et al., 1999. Comparative Diversity of Ammonia Oxidizer 16S rRNA Gene Sequences in Native, Tilled, and Successional Soils. Appl. Environ. Microbiol., 65(7): 2994–3000Google Scholar
  39. Meng, H., Katayama, Y., Gu, J. D., 2017. More Wide Occurrence and Dominance of Ammonia-Oxidizing Archaea than Bacteria at Three Angkor Sandstone Temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration & Biodegradation, 117: 78–88.  https://doi.org/10.1016/j.ibiod.2016.11.012 Google Scholar
  40. Moisander, P. H., Beinart, R. A., Hewson, I., et al., 2010. Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972): 1512–1514.  https://doi.org/10.1126/science.1185468 Google Scholar
  41. Nicol, G. W., Leininger, S., Schleper, C., et al., 2008. The Influence of Soil PH on the Diversity, Abundance and Transcriptional Activity of Ammonia Oxidizing Archaea and Bacteria. Environmental Microbiology, 10(11): 2966–2978.  https://doi.org/10.1111/j.1462-2920.2008.01701.x Google Scholar
  42. Niederberger, T. D., Sohm, J. A., Tirindelli, J., et al., 2012. Diverse and Highly Active Diazotrophic Assemblages Inhabit Ephemerally Wetted Soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82(2): 376–390.  https://doi.org/10.1111/j.1574-6941.2012.01390.x Google Scholar
  43. Oliveira, A. L. M., Canuto, E. L., Silva, E. E., et al., 2004. Survival of Endophytic Diazotrophic Bacteria in Soil under Different Moisture Levels. Brazilian Journal of Microbiology, 35(4): 295–299.  https://doi.org/10.1590/s1517-83822004000300005 Google Scholar
  44. Oved, T., Shaviv, A., Goldrath, T., et al., 2001. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil. Applied and Environmental Microbiology, 67(8): 3426–3433.  https://doi.org/10.1128/aem.67.8.3426-3433.2001 Google Scholar
  45. Pankratov, T. A., Serkebaeva, Y. M., Kulichevskaya, I. S., et al., 2008. Substrate-Induced Growth and Isolation of Acidobacteria from Acidic Sphagnum Peat. The ISME Journal, 2(5): 551–560.  https://doi.org/10.1038/ismej.2008.7 Google Scholar
  46. Papaefthimiou, D., van Hove, C., Lejeune, A., et al., 2008. Diversity and Host Specificity of Azollacyanobionts. Journal of Phycology, 44(1): 60–70.  https://doi.org/10.1111/j.1529-8817.2007.00448.x Google Scholar
  47. Qin, Y. M., Wang, J. X., Xie, S. C., et al., 2010. Morphological Variation and Habitat Selection of Testate Amoebae in Dajiuhu Peatland, Central China. Journal of Earth Science, 21(S1): 253–256.  https://doi.org/10.1007/s12583-010-0228-4 Google Scholar
  48. RCore, T., 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Online: https://doi.org/www.R-project.org Google Scholar
  49. Rotthauwe, J. H., Witzel, K. P., Liesack, W., 1997. The Ammonia Monooxygenase Structural Gene amoA as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammonia-Oxidizing Populations. Applied and Environmental Microbiology, 63(12): 4704–4712Google Scholar
  50. Schwintzer, C. R., 1983. Nonsymbiotic and Symbiotic Nitrogen Fixation in a Weakly Minerotrophic Peatland. American Journal of Botany, 70(7): 1071.  https://doi.org/10.2307/2442817 Google Scholar
  51. Silva, M. C. P. E., Semenov, A. V., van Elsas, J. D., et al., 2011. Seasonal Variations in the Diversity and Abundance of Diazotrophic Communities Across Soils. FEMS Microbiology Ecology, 77(1): 57–68.  https://doi.org/10.1111/j.1574-6941.2011.01081.x Google Scholar
  52. Stahl, D. A., de la Torre, J. R., 2012. Physiology and Diversity of Ammonia-Oxidizing Archaea. Annual Review of Microbiology, 66(1): 83–101.  https://doi.org/10.1146/annurev-micro-092611-150128 Google Scholar
  53. Sun, W., Xia, C. Y., Xu, M. Y., et al., 2013. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong. Microbes and Environments, 28(4): 457–465.  https://doi.org/10.1264/jsme2.me13066 Google Scholar
  54. Tahon, G., Tytgat, B., Stragier, P., et al., 2016. Analysis of CbbL, nifH, and PufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. Microbial Ecology, 71(1): 131–149.  https://doi.org/10.13039/501100003130 Google Scholar
  55. Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.  https://doi.org/10.1093/molbev/mst197 Google Scholar
  56. Tourna, M., Stieglmeier, M., Spang, A., et al., 2011. Nitrososphaera Viennensis, an Ammonia Oxidizing Archaeon from Soil. Proceedings of the National Academy of Sciences, 108(20): 8420–8425.  https://doi.org/10.1073/pnas.1013488108 Google Scholar
  57. van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., et al., 2015. Complete Nitrification by a Single Microorganism. Nature, 528(7583): 555–559.  https://doi.org/10.1038/nature16459 Google Scholar
  58. Vile, M. A., Kelman Wieder, R., Živković, T., et al., 2014. N2-Fixation by Methanotrophs Sustains Carbon and Nitrogen Accumulation in Pristine Peatlands. Biogeochemistry, 121(2): 317–328.  https://doi.org/10.1007/s10533-014-0019-6 Google Scholar
  59. Wang, M., Liu, Z., Ma, X., et al., 2013. Distribution Law of Peat in the World. Wetland Science, 11(3): 339–346Google Scholar
  60. Wang, R. C., Wang, H. M., Xiang, X., et al., 2017. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969–976.  https://doi.org/10.1007/s12583-017-0818-5 Google Scholar
  61. Warren, M. J., Lin, X. J., Gaby, J. C., et al., 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Applied and Environmental Microbiology, 83(17): 01174–17.  https://doi.org/10.1128/aem.01174-17 Google Scholar
  62. Yang, H., Ding, W. H., Wang, J. X., et al., 2012. Soil PH Impact on Microbial Tetraether Lipids and Terrestrial Input Index (BIT) in China. Science China Earth Sciences, 55(2): 236–245.  https://doi.org/10.1007/s11430-011-4295-x Google Scholar
  63. Ye, L., Zhu, G., Wang, Y., et al., 2011. Abundance and Biodiversity of Ammonia-Oxidizing Archaea and Bacteria in Littoral Wetland of Baiyangdian Lake, North China. Acta Ecologica Sinica, 31(8): 2209–2215. (in Chinese with English Abstract)Google Scholar
  64. Yeager, C. M., Kornosky, J. L., Housman, D. C., et al., 2004. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 70(2): 973–983.  https://doi.org/10.1128/aem.70.2.973-983.2004 Google Scholar
  65. Zadorina, E. V., Slobodova, N. V., Boulygina, E. S., et al., 2009. Analysis of the Diversity of Diazotrophic Bacteria in Peat Soil by Cloning of the nifH Gene. Microbiology, 78(2): 218–226.  https://doi.org/10.1134/s0026261709020131 Google Scholar
  66. Zhang, H., Li, P., Hu, X., et al., 2006. Screening and Cultivation Conditions of Two Nitrosobacteria Strains. Environmental Protection of Chemical Industry, 26(5): 366–369. (in Chinese with English Abstract)Google Scholar
  67. Zhou, H. X., Dang, H. Y., Klotz, M. G., 2016. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Frontiers in Microbiology, 7(236): 1111.  https://doi.org/10.3389/fmicb.2016.01111 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations