Advertisement

Journal of Earth Science

, Volume 30, Issue 2, pp 244–257 | Cite as

Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

  • Yan Chen
  • Qian Ye
  • Haishui JiangEmail author
  • Paul B. Wignall
  • Jinling Yuan
Paleontology and Paleoecology
  • 58 Downloads

Abstract

Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10B (a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups (bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.

Key Words

Permian-Triassic Napo Platform conodont biostratigraphy carbon isotope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41572324), the Special Project on Basic Work of Science and Technology from the National Ministry of Science and Technology of China (No. 2015FY310100-11), and the China Geological Survey (No. DD20160120-04). SEM pictures and carbon isotopes data were undertaken at the State Key Laboratory of Biogeology and Environmental Geology (China). We thank Suxin Zhang, Yuheng Fang for their assistance in SEM. Thanks also go to Huyue Song for the helps in processing the carbon isotopes data. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0884-3.

References Cited

  1. Bai, R. Y., Dai, X., Song, H. J., 2017. Conodont and Ammonoid Biostratigraphies around the Permian-Triassic Boundary from Jianzishan of South China. Journal of Earth Science, 28(4): 595–613.  https://doi.org/10.1007/s12583-017-0754-4 CrossRefGoogle Scholar
  2. Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian-Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7(1): 43630.  https://doi.org/10.1038/srep43630 CrossRefGoogle Scholar
  3. Baud, A., Richoz, S., Pruss, S., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1/2/3): 81–89.  https://doi.org/10.1016/j.gloplacha.2006.06.008 CrossRefGoogle Scholar
  4. Brand, U., Blamey, N., Garbelli, C., et al., 2016. Methane Hydrate: Killer Cause of Earth’s Greatest Mass Extinction. Palaeoworld, 25(4): 496–507.  https://doi.org/10.1016/j.palwor.2016.06.002 CrossRefGoogle Scholar
  5. Brosse, M., Bucher, H., Bagherpour, B., et al., 2015. Conodonts from the Early Triassic Microbialite of Guangxi (South China): Implications for the Definition of the Base of the Triassic System. Palaeontology, 58(3): 563–584.  https://doi.org/10.1111/pala.12162 CrossRefGoogle Scholar
  6. Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316–3321.  https://doi.org/10.1073/pnas.1317692111 CrossRefGoogle Scholar
  7. Chen, B., Joachimski, M. M., Wang, X. D., et al., 2016. Ice Volume and Paleoclimate History of the Late Paleozoic Ice Age from Conodont Apatite Oxygen Isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 151–161.  https://doi.org/10.1016/j.palaeo.2016.01.002 CrossRefGoogle Scholar
  8. Chen, J., Beatty, T. W., Henderson, C. M., et al., 2009. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 36(6): 442–458.  https://doi.org/10.1016/j.jseaes.2008.08.002 CrossRefGoogle Scholar
  9. Chen, Z.-Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 149: 67–107.  https://doi.org/10.1016/j.earscirev.2014.10.005 CrossRefGoogle Scholar
  10. Clark, D. L., 1959. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 33(2): 305–312Google Scholar
  11. Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 348(6231): 229–232.  https://doi.org/10.1126/science.aaa0193 CrossRefGoogle Scholar
  12. Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30–52.  https://doi.org/10.1016/j.palaeo.2017.03.014 CrossRefGoogle Scholar
  13. Ezaki, Y., Liu, J., Nagano, T., et al., 2008. Geobiological Aspects of the Earliest Triassic Microbialites along the Southern Periphery of the Tropical Yangtze Platform: Initiation and Cessation of a Microbial Regime. PALAIOS, 23(6): 356–369.  https://doi.org/10.2110/palo.2007.p07-035r CrossRefGoogle Scholar
  14. Forel, M. B., Crasquin, S., Kershaw, S., et al., 2013. In the Aftermath of the End-Permian Extinction: The Microbialite Refuge?. Terra Nova, 25(2): 137–143.  https://doi.org/10.1111/ter.12017 CrossRefGoogle Scholar
  15. Foster, W. J., Danise, S., Price, G. D., et al., 2017. Subsequent Biotic Crises Delayed Marine Recovery Following the Late Permian Mass Extinction Event in Northern Italy. PLOS ONE, 12(3): e0172321.  https://doi.org/10.1371/journal.pone.0172321 CrossRefGoogle Scholar
  16. Grasby, S. E., Beauchamp, B., Knies, J., 2016. Early Triassic Productivity Crises Delayed Recovery from World’s Worst Mass Extinction. Geology, 44(9): 779–782.  https://doi.org/10.1130/g38141.1 CrossRefGoogle Scholar
  17. Hautmann, M., Bucher, H., Brühwiler, T., et al., 2011. An Unusually Diverse Mollusc Fauna from the Earliest Triassic of South China and Its Implications for Benthic Recovery after the End-Permian Biotic Crisis. Geobios, 44(1): 71–85.  https://doi.org/10.1016/j.geobios.2010.07.004 CrossRefGoogle Scholar
  18. He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123–138.  https://doi.org/10.1111/gbi.12119 CrossRefGoogle Scholar
  19. Huckriede, R., 1958. Die Conodonten Der Mediterranen Trias und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 32(3/4): 141–175CrossRefGoogle Scholar
  20. Jiang, H. S., Aldridge, R. J., Lai, X. L., et al., 2011. Phylogeny of the Conodont Genera Hindeodus and Isarcicella across the Permian-Triassic Boundary. Lethaia, 44(4): 374–382.  https://doi.org/10.1111/j.1502-3931.2010.00248.x CrossRefGoogle Scholar
  21. Jiang, H. S., Joachimski, M. M., Wignall, P. B., et al., 2015. A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 690–695.  https://doi.org/10.1016/j.palaeo.2015.10.002 CrossRefGoogle Scholar
  22. Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55(1/2/3): 39–55.  https://doi.org/10.1016/j.gloplacha.2006.06.007 CrossRefGoogle Scholar
  23. Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3): 413–430.  https://doi.org/10.1007/s12583-014-0444-4 CrossRefGoogle Scholar
  24. Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195–198.  https://doi.org/10.1130/g32707.1 CrossRefGoogle Scholar
  25. Kershaw, S., Collin, P. Y., Crasquin, S., 2016. Comment to Lehrmann et al. New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 31(3): 111–117.  https://doi.org/10.2110/palo.2015.093 CrossRefGoogle Scholar
  26. Kozur, H., 1995. Some Remarks to the Conodonts Hindeodus and Isarcicella in the Latest Permian and Earliest Triassic. Palaeoworld, 6: 64–77Google Scholar
  27. Kozur, H., 1996. The Conodonts Hindeodus, Isarcicella, Sweetohindeodus in the Uppermost Permian and Lowermost Triassic. Geologia Croatica, 49(1): 81–116Google Scholar
  28. Kozur, H., Mostler, H., Rahimi-Yazd, A., 1975. Beiträge zur Mikrofauna Permotriadischer Schichtfolgen Teil II: Neue Conodonten aus dem Oberperm und der Basalen Trias von Nord- und Zentraliran. Geol. Palaont. Mitt. Innsbruck, 5(3): 1–23Google Scholar
  29. Kozur, H., Pjatakova, M., 1976. Die Conodontenart Anchignathodus parvus n.sp., eine wichtige Leiform der basalen Trias. Proceedings Koninkl Nederland Akademie van Wetenschappen, Series B, 79: 123–128Google Scholar
  30. Krull, E. S., Lehrmann, D. J., Druke, D., et al., 2004. Stable Carbon Isotope Stratigraphy across the Permian-Triassic Boundary in Shallow Marine Carbonate Platforms, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 297–315.  https://doi.org/10.1016/s0031-0182(03)00732-6 CrossRefGoogle Scholar
  31. Lehrmann, D. J., Bentz, J. M., Wood, T., et al., 2015. Environmental Controls on the Genesis of Marine Microbialites and Dissolution Surface Associated with the End-Permian Mass Extinction: New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 30(7): 529–552.  https://doi.org/10.2110/palo.2014.088 CrossRefGoogle Scholar
  32. Lehrmann, D. J., Minzoni, M., Li, X. W., et al., 2012. Lower Triassic Oolites of the Nanpanjiang Basin, South China: Facies Architecture, Giant Ooids, and Diagenesis—Implications for Hydrocarbon Reservoirs. AAPG Bulletin, 96(8): 1389–1414.  https://doi.org/10.1306/01231211148 CrossRefGoogle Scholar
  33. Lehrmann, D. J., Payne, J. L., Felix, S. V., et al., 2003. Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China: Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath. PALAIOS, 18(2): 138–152.  https://doi.org/10.1669/0883-1351(2003)18<138:pbsfsc>2.0.co;2 CrossRefGoogle Scholar
  34. Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105: 102–120.  https://doi.org/10.1016/j.gloplacha.2011.09.009 CrossRefGoogle Scholar
  35. Li, F., Yan, J. X., Chen, Z. Q., et al., 2015. Global Oolite Deposits Across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 149: 163–180.  https://doi.org/10.1016/j.earscirev.2014.12.006 CrossRefGoogle Scholar
  36. Li, Z. S., Zhan L. P., Dai, J. Y., et al., 1989. Study on the Permian-Triassic Biostratigraphy and Event Stratigraphy of Northern Sichuan and Southern Shaanxi. Geological Memoirs Vol. 9. Geological Publishing House, Beijing. 448 (in Chinese)Google Scholar
  37. Liu, J. B., Ezaki, Y., Yang, S. R., et al., 2007. Age and Sedimentology of Microbialites after the End-Permian Mass Extinction in Luodian, Guizhou Province. Journal of Palaeogeography, 9(5): 473–486 (in Chinese with English Abstract)Google Scholar
  38. Luo, G. M., Kump, L. R., Wang, Y. B., et al., 2010. Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following End-Permian Mass Extinction. Earth and Planetary Science Letters, 300(1/2): 101–111.  https://doi.org/10.1016/j.epsl.2010.09.041 CrossRefGoogle Scholar
  39. Nicoll, R. S., Metcalfe, I., Wang, C. Y., 2002. New Species of the Conodont Genus Hindeodus and the Conodont Biostratigraphy of the Permian-Triassic Boundary Interval. Journal of Asian Earth Sciences, 20(6): 609–631.  https://doi.org/10.1016/s1367-9120(02)00021-4 CrossRefGoogle Scholar
  40. Orchard, M. J., Nassichuk, W. W., Rui, L., 1994. Conodonts from the Lower Griesbachian Otoceras Latilobatum Bed of Selong, Tibet and the Position of the Permian-Triassic boundary. Memoir-Canadian Society of Petroleum Geologists, 17: 823–843Google Scholar
  41. Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. Geological Society of America Bulletin, 119(7/8): 771–784.  https://doi.org/10.1130/b26091.1 CrossRefGoogle Scholar
  42. Perri, M. C., Farabegoli, F., 2003. Conodonts across the Permian-Triassic Boundary in the Southern Alps. In: Mawson, R., Talent, J. A., eds., Contributions to the Second Australian Conodont Symposium. Courier Forschungsinstitut Senckenberg Series, 281–313Google Scholar
  43. Regional Geological Survey Team of the Guangxi Zhuang Autonomous Region Geological Bureau, 1974. 1: 20 000 Regional Geological Survey Report of the People’s Republic of China: Baise Map and Delong Map, Geological Part. Guangxi Zhuang Autonomous Region Geological Bureau, Yishan. 1–188 (in Chinese)Google Scholar
  44. Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13Ccarb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375: 156–165.  https://doi.org/10.1016/j.epsl.2013.05.020 CrossRefGoogle Scholar
  45. Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061): 1367–1372.  https://doi.org/10.1126/science.1213454 CrossRefGoogle Scholar
  46. Shen, S. Z., Ramezani, J., Chen, J., et al., 2018. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin. https://doi.org/10.1130/b31909.1
  47. Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of δ13Ccarb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 55(7): 1101–1109.  https://doi.org/10.1007/s11430-012-4416-1 CrossRefGoogle Scholar
  48. Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(1): 4132.  https://doi.org/10.1038/srep04132 CrossRefGoogle Scholar
  49. Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6(1): 52–56.  https://doi.org/10.1038/ngeo1649 CrossRefGoogle Scholar
  50. Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15): 3782–3787.  https://doi.org/10.1073/pnas.1711862115 CrossRefGoogle Scholar
  51. Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370.  https://doi.org/10.1126/science.1224126 CrossRefGoogle Scholar
  52. Tian, L., Bottjer, D. J., Tong, J. N., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. PALAIOS, 30(9): 714–727.  https://doi.org/10.2110/palo.2014.110 CrossRefGoogle Scholar
  53. Wang, C. Y., 1996. Conodont Evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 29: 30–37Google Scholar
  54. Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 156–166.  https://doi.org/10.1016/j.palaeo.2015.11.032 CrossRefGoogle Scholar
  55. Wang, Y. B., Meng, Z., Liao, W., et al., 2011. Shallow Marine Ecosystem Feedback to the Permian/Triassic Mass Extinction. Frontiers of Earth Science, 5(1): 14–22.  https://doi.org/10.1007/s11707-011-0164-3 CrossRefGoogle Scholar
  56. Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End-Permian Mass Extinction. Paleobiology, 40(1): 113–129.  https://doi.org/10.1666/13022 CrossRefGoogle Scholar
  57. Wignall, P. B., 2015. The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions. Princeton University Press, Princeton. 224.  https://doi.org/10.1515/9781400874248 CrossRefGoogle Scholar
  58. Wignall, P. B., Hallam, A., 1996. Facies Change and the End-Permian Mass Extinction in S.E. Sichuan, China. PALAIOS, 11(6): 587–596.  https://doi.org/10.2307/3515193 CrossRefGoogle Scholar
  59. Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5/6): 954–956.  https://doi.org/10.1130/b26424.1 CrossRefGoogle Scholar
  60. Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4(1): 2452.  https://doi.org/10.1038/ncomms3452 CrossRefGoogle Scholar
  61. Xiang, L., Schoepfer, S. D., Zhang, H., et al., 2016. Oceanic Redox Evolution across the End-Permian Mass Extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 59–71.  https://doi.org/10.1016/j.palaeo.2015.10.046 CrossRefGoogle Scholar
  62. Yan, C. B., Wang, L. N., Jiang, H. S., et al., 2013. Uppermost Permian to Lower Triassic Conodonts at Bianyang Section, Guihzou Province, South China. PALAIOS, 28(8): 509–522.  https://doi.org/10.2110/palo.2012.p12-077r CrossRefGoogle Scholar
  63. Yang, B., Lai, X. L., Wignall, P. B., et al., 2012. A Newly Discovered Earliest Triassic Chert at Gaimao Section, Guizhou, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 344/345: 69–77.  https://doi.org/10.1016/j.palaeo.2012.05.019 CrossRefGoogle Scholar
  64. Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137: 19–33.  https://doi.org/10.1016/j.earscirev.2013.06.003 CrossRefGoogle Scholar
  65. Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan. Earth-Science Reviews, 115(3): 163–172.  https://doi.org/10.1016/j.earscirev.2012.08.006 CrossRefGoogle Scholar
  66. Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102–114Google Scholar
  67. Yuan, J. L., Jiang, H. S., Wang, D. C., 2015. LST: A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Technology Information, 34(5): 225–230 (in Chinese with English Abstract)Google Scholar
  68. Zhang, K. X., Tong, J. N., Lai, X. L., et al., 2009. Progress on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474–486 (in Chinese with English Abstract)Google Scholar
  69. Zhang, N., Jiang, H. S., Zhong, W. L., et al., 2014. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China. Journal of Earth Science, 25(5): 779–786.  https://doi.org/10.1007/s12583-014-0472-0 CrossRefGoogle Scholar
  70. Zhao, X. M., Tong, J. N., Yao, H. Z., et al., 2008. Anachronistic Facies in the Lower Triassic of South China and Their Implications to the Ecosystems during the Recovery Time. Science in China Series D: Earth Sciences, 51(11): 1646–1657.  https://doi.org/10.1007/s11430-008-0128-y CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biogeology and Environment GeologyChina University of GeosciencesWuhanChina
  2. 2.School of Earth SciencesChina University of GeosciencesWuhanChina
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  4. 4.Non-ferrous Metals Geological Exploration Bureau of Zhejiang ProvinceShaoxingChina

Personalised recommendations