Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 52–69 | Cite as

Piaoac Granites Related W-Sn Mineralization, Northern Vietnam: Evidences from Geochemistry, Zircon Geochronology and Hf Isotopes

  • Tuan Anh Nguyen
  • Xiaoyong YangEmail author
  • Hien Vu Thi
  • Lei Liu
  • Insung Lee
Article
  • 11 Downloads

Abstract

Piaoac granites exposed in the Cao Bang region, northern Vietnam, are S-type granite, which are associated with W-Sn-Mo-Be-F mineralization. Zircon U-Pb ages, major and trace elements, mineral chemical and Hf isotopic compositions of the W-Sn-bearing granites from the Piaoac District have been investigated in detail. LA-ICP-MS U-Pb dating of zircon grains from these granites yielded ages of 82.5±2.3 and 82±1.8 Ma, representing an episode of Late Cretaceous magmatic event. These granites are characterized by high peraluminous and have typical S-type geochemical signatures with high SiO2 (72.37 wt.%-73.07 wt.%), high A/CNK values (1.61-1.65) and Аl2О3 (14.4 wt.%-15 wt.%). They are enriched in Rb, U, K, Th, Ta and Pb and display pronounced negative Ba, Sr, Nb, Ti and Eu (Eu/Eu*=0.19-0.24) anomalies. The high degree of fractional crystallization is characterized by low Rb, Sr, Ba and Eu concentrations with high ratios of La/Sm and Eu/Eu*. Zircon grains show εHf(t) values from -9.69 to -0.9 and the corresponding TDm2 range from 1.2 to 1.7 Ga, indicating that these granites could be derived from the Proterozoic basement rocks with minor input from mantle-derived magmas. The calculation of Fe3+ and Fe2+ of biotites indicates a low oxygen fugacity condition (log \(f_{\text{O}_{2}}\) ranging from 10-17 to 10-18 bars, below MH), which is favorable for the W-Sn mineralization. Tungsten and tin have been enriched in granitic magmas through fractionation, and low oxygen fugacity conditions have promoted the accumulation and transportation of W-Sn in the hydrothermal fluids, leading to deposition of mineral phases. The geochemical data suggest that Piaoac granites formed in an extensional setting related with the Late Cretaceous magmatism occurring large-scale lithospheric extensional in South China Block.

Key words

geochemistry zircon U-Pb age Hf isotope Piaoac granite W-Sn mineralization Northern Vietnam 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Key R & D Program of China (No. 2016YFC0600404) and the National Natural Science Foundation of China (Nos. 41673040 and 41611540339). The authors are grateful to Hou Z H, Deng J H, Gu H L, Qi H S, Ren Y S, and Shu S Y, for assistance in zircon U-Pb dating and Lu-Hf isotope analyses. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0865-6.

Supplementary material

12583_2018_865_MOESM1_ESM.xlsx (105 kb)
Table S1 LA-ICP-MS U-Pb isotope compositions for zircon from the Piaoac.
12583_2018_865_MOESM2_ESM.xlsx (19 kb)
Table S2 Major element (in wt.%) and trace element (in ppm) data of the Piaoac granites
12583_2018_865_MOESM3_ESM.xlsx (21 kb)
Table S3. Representative electron microprobe analyses of muscovite from the Piaoac granites.
12583_2018_865_MOESM4_ESM.xlsx (16 kb)
Table S4. Representative electron microprobe analyses of biotite from the Piaoac granites.
12583_2018_865_MOESM5_ESM.xlsx (18 kb)
Table S5 Lu-Hf isotope compositions for zircon from the Piaoac granites

References Cited

  1. Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541.  https://doi.org/10.1093/petrology/35.2.525 CrossRefGoogle Scholar
  2. Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3): 51–73.  https://doi.org/10.1016/s0024-4937(99)00052-3 Google Scholar
  3. Anh, P. L., Vladimirov, A. G., Kruk, N. N., et al., 2010. Stanniferrous Granites of Vietnam: Rb-Sr and Ar-Ar Isotope Age, Composition, Sources, and Geodynamic Formation Conditions. Doklady Earth Sciences, 432(2): 839–845.  https://doi.org/10.1134/s1028334x10060280 CrossRefGoogle Scholar
  4. Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234.  https://doi.org/10.1130/g37475.1 CrossRefGoogle Scholar
  5. Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626.  https://doi.org/10.1016/s0024-4937(98)00085-1 CrossRefGoogle Scholar
  6. Barbarin, B., 1996. Genesis of the Two Main Types of Peraluminous Granitoids. Geology, 24(4): 295–298.  https://doi.org/10.1130/0091-7613(1996)024<0295:gottmt>2.3.co;2 CrossRefGoogle Scholar
  7. Batchelor, R. A., 2003. Geochemistry of Biotite in Metabentonites as an Age Discriminant, Indicator of Regional Magma Sources and Potential Correlating Tool. Mineralogical Magazine, 67(4): 807–817.  https://doi.org/10.1180/0026461036740137 CrossRefGoogle Scholar
  8. Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–401.  https://doi.org/10.1093/petrology/32.2.365 CrossRefGoogle Scholar
  9. Ben, T. X., van Hoai, N., Visnepskaya, Y. E., 1993. The Behaviour of Rare Metals in Piaoac Granite Massif, Vietnam. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 383–386.  https://doi.org/10.1016/0743-9547(93)90039-r Google Scholar
  10. Blevin, P. L., Chappell, B. W., 1995. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; The Metallogeny of I-and S-Type Granites. Economic Geology, 90(6): 1604–1619.  https://doi.org/10.2113/gsecongeo.90.6.1604 CrossRefGoogle Scholar
  11. Blevin, P. L., Chappell, B. W., 1992. The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 305–316.  https://doi.org/10.1017/s0263593300007987 CrossRefGoogle Scholar
  12. Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258.  https://doi.org/10.1016/s0012-821x(97)00040-x CrossRefGoogle Scholar
  13. Breiter, K., 2012. Nearly Contemporaneous Evolution of the A-And S-Type Fractionated Granites in the Krušné Hory/Erzgebirge Mts., Central Europe. Lithos, 151: 105–121.  https://doi.org/10.1016/j.lithos.2011.09.022 CrossRefGoogle Scholar
  14. Cao, J. Y., Yang, X. Y., Du, J. G., et al., 2018. Formation and Geodynamic Implication of the Early Yanshanian Granites Associated with W-Sn Mineralization in the Nanling Range, South China: An Overview. International Geology Review, 60(11/12/13/14): 1744–1771.  https://doi.org/10.1080/00206814.2018.1466370 Google Scholar
  15. Chappell, B. W., 1999. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551.  https://doi.org/10.1016/s0024-4937(98)00086-3 CrossRefGoogle Scholar
  16. Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous I-Type Granites. Lithos, 153: 142–153.  https://doi.org/10.1016/j.lithos.2012.07.008 CrossRefGoogle Scholar
  17. Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174Google Scholar
  18. Chappell, B. W., White, A. J. R., 1992. I-And S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1/2): 1–26.  https://doi.org/10.1017/s0263593300007720 Google Scholar
  19. Chen, Z. C., Lin, W., Faure, M., et al., 2014. Geochronology and Isotope Analysis of the Late Paleozoic to Mesozoic Granitoids from Northeastern Vietnam and Implications for the Evolution of the South China Block. Journal of Asian Earth Sciences, 86: 131–150.  https://doi.org/10.1016/j.jseaes.2013.07.039 CrossRefGoogle Scholar
  20. Cheng, Y. B., Mao, J. W., Liu, P., 2016. Geodynamic Setting of Late Cretaceous Sn-W Mineralization in Southeastern Yunnan and Northeastern Vietnam. Solid Earth Sciences, 1(3): 79–88.  https://doi.org/10.1016/j.sesci.2016.12.001 CrossRefGoogle Scholar
  21. Cheng, Y. B., Mao, J. W., Spandler, C., 2013. Petrogenesis and Geodynamic Implications of the Gejiu Igneous Complex in the Western Cathaysia Block, South China. Lithos, 175/176: 213–229.  https://doi.org/10.1016/j.lithos.2013.04.002 CrossRefGoogle Scholar
  22. Cheng, Y. B., Mao, J. W., Rusk, B., et al., 2012. Geology and Genesis of Kafang Cu-Sn Deposit, Gejiu District, SW China. Ore Geology Reviews, 48: 180–196.  https://doi.org/10.1016/j.oregeorev.2012.03.004 CrossRefGoogle Scholar
  23. Cheng, Y. B., Mao, J. W., 2010. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos, 120(3/4): 258–276.  https://doi.org/10.1016/j.lithos.2010.08.013 Google Scholar
  24. Clemens, J. D., 2003. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1–18.  https://doi.org/10.1016/s0012-8252(02)00107-1 CrossRefGoogle Scholar
  25. Cobbing, E. J., Mallick, D. I. J., Pitfield, P. E. J., et al., 1986. The Granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 143(3): 537–550.  https://doi.org/10.1144/gsjgs.143.3.0537 CrossRefGoogle Scholar
  26. Dovjikov, A. E., 1965. Geology of Northern Vietnam. Technical and Scientific Publisher, Hanoi. 198 (in Vietnamese)Google Scholar
  27. Dung, T. M., Anh, N. T., Hien, V. T., et al., 2013. Emplacement Age and Tectonic Significance of the Pia Oac Granite Massif, Nguyen Binh District, Cao Bang Province. Journal of Geology, 334A: 20–27 (in Vietnamese)Google Scholar
  28. Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134.  https://doi.org/10.1016/0024-4937(90)90043-z CrossRefGoogle Scholar
  29. Ellis, D. J., Thompson, A. B., 1986. Subsolidus and Partial Melting Reactions in the Quartz-Excess CaO+MgO+Al2O3+SiO2+H2O System under Water-Excess and Water-Deficient Conditions to 10 kb: Some Implications for the Origin of Peraluminous Melts from Mafic Rocks. Journal of Petrology, 27(1): 91–121.  https://doi.org/10.1093/petrology/27.1.91 CrossRefGoogle Scholar
  30. Faure, M., Lepvrier, C., Nguyen, V. V., et al., 2014. The South China Block-Indochina Collision: Where, When, and How?. Journal of Asian Earth Sciences, 79: 260–274.  https://doi.org/10.1016/j.jseaes.2013.09.022 CrossRefGoogle Scholar
  31. Feng, J. R., Mao, J. W., Pei, R. F., 2012. Ages and Geochemistry of Laojunshan Granites in Southeastern Yunnan, China: Implications for W-Sn Polymetallic Ore Deposits. Mineralogy and Petrology, 107(4): 573–589.  https://doi.org/10.1007/s00710-012-0253-3 CrossRefGoogle Scholar
  32. Fogliata, A. S., Báez, M. A., Hagemann, S. G., et al., 2012. Post-Orogenic, Carboniferous Granite-Hosted Sn-W Mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina. Ore Geology Reviews, 45: 16–32.  https://doi.org/10.1016/j.oregeorev.2011.12.001 CrossRefGoogle Scholar
  33. Förster, H. J., Tischendorf, G., Trumbull, R. B., 1997. An Evaluation of the Rb vs. (Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks. Lithos, 40(2/3/4): 261–293.  https://doi.org/10.1016/s0024-4937(97)00032-7 Google Scholar
  34. Foster, M. D., 1960. Interpretation of Composition of Trioctaheral Micas. Geological Survey Professional Paper, 354(B): 1–49Google Scholar
  35. Fujimaki, H., 1986. Partition Coefficients of Hf, Zr, and REE between Zircon, Apatite, and Liquid. Contributions to Mineralogy and Petrology, 94(1): 42–45.  https://doi.org/10.1007/bf00371224 CrossRefGoogle Scholar
  36. Galfetti, T., Bucher, H., Martini, R., et al., 2008. Evolution of Early Triassic Outer Platform Paleoenvironments in the Nanpanjiang Basin (South China) and Their Significance for the Biotic Recovery. Sedimentary Geology, 204(1/2): 36–60.  https://doi.org/10.1016/j.sedgeo.2007.12.008 CrossRefGoogle Scholar
  37. Golonka, J., Krobicki, M., Pająk, J., et al., 2006. Phanerozoic Palaeogeography of Southeast Asia. GeoLines, 20: 40–43Google Scholar
  38. Gomes, M. E. P., Neiva, A. M. R., 2002. Petrogenesis of Tin-Bearing Granites from Ervedosa, Northern Portugal: The Importance of Magmatic Processes. Chemie der Erde--Geochemistry, 62(1): 47–72.  https://doi.org/10.1078/0009-2819-00002 CrossRefGoogle Scholar
  39. Griffin, W. L., Wang, X. C., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269.  https://doi.org/10.1016/s0024-4937(02)00082-8 CrossRefGoogle Scholar
  40. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147.  https://doi.org/10.1016/s0016-7037(99)00343-9 CrossRefGoogle Scholar
  41. Henry, D. J., Guidotti, C. V., Thomson, J. A., 2005. The Ti-Saturation Surface for Low-To-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316–328.  https://doi.org/10.2138/am.2005.1498 CrossRefGoogle Scholar
  42. Hien, V. T., 2012. Geology Structure and Mineralization of the Sn-W Lung Muoi, Piaoac, Caobang Province, Northern Viet Nam. Thesis Hanoi University of Mining and Geology, Vietnam. 54Google Scholar
  43. Hoa, T. T., Izokh, A. E., Polyakov, G. V., et al., 2008. Permo-Triassic Magmatism and Metallogeny of Northern Vietnam in Relation to the Emeishan Plume. Russian Geology and Geophysics, 49(7): 480–491.  https://doi.org/10.1016/j.rgg.2008.06.005 CrossRefGoogle Scholar
  44. Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439.  https://doi.org/10.1046/j.1525-1314.2000.00266.x CrossRefGoogle Scholar
  45. Izokh, E. P., 1965. Geologica Sevemogo Vietnama. Objasnitelmaja Zapiska Geologitcheskoi Karte Severnogo Vietnama. Geology of Northern Part Vietnam. Dovijikov, A. E., ed., Sciences and Technology, Hanoi Publisher, Hanoi. 567 (in Vietnamese)Google Scholar
  46. Lepvrier, C., Faure, M., van Vuong, N., et al., 2011. North-Directed Triassic Nappes in Northeastern Vietnam (East Bac Bo). Journal of Asian Earth Sciences, 41(1): 56–68.  https://doi.org/10.1016/j.jseaes.2011.01.002 CrossRefGoogle Scholar
  47. Lehmann, B., 1990. Metallogeny of Tin. Lecture Notes in Earth Sciences. Springer-Verlag, Berlin. 211Google Scholar
  48. Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan-Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1/2/3/4): 3–84.  https://doi.org/10.1016/0040-1951(95)00070-4 Google Scholar
  49. Linnen, R. L., Pichavant, M., Holtz, F., 1996. The Combined Effects of ƒO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Haplogranitic Melts. Geochimica et Cosmochimica Acta, 60(24): 4965–4976.  https://doi.org/10.1016/s0016-7037(96)00295-5 CrossRefGoogle Scholar
  50. Linnen, R. L., Pichavant, M., Holtz, F., et al., 1995. The Effect of ƒO2 on the Solubility, Diffusion, and Speciation of Tin in Haplogranitic Melt at 850 °C and 2 kbar. Geochimica et Cosmochimica Acta, 59(8): 1579–1588.  https://doi.org/10.1016/0016-7037(95)00064-7 CrossRefGoogle Scholar
  51. Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 25: 552–558Google Scholar
  52. Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Cassiterite and Zircon from the Dulong Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 23: 967–976 (in Chinese with English Abstract).Google Scholar
  53. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43.  https://doi.org/10.1016/j.chemgeo.2008.08.004 CrossRefGoogle Scholar
  54. Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571.  https://doi.org/10.1093/petrology/egp082 CrossRefGoogle Scholar
  55. Liu, W. H., Zhang, X. J., Zhang, J., et al., 2018. Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 29(3): 573–586.  https://doi.org/10.1007/s12583-018-0785-5 CrossRefGoogle Scholar
  56. Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America: Abstracts with Programs, 11(7): 468Google Scholar
  57. Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronology Toolkit for Microsoft Excel. Berkeley Geochronology Center, California. 1–74Google Scholar
  58. Mahood, G., Hildreth, W., 1983. Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11–30.  https://doi.org/10.1016/0016-7037(83)90087-x CrossRefGoogle Scholar
  59. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643.  https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 CrossRefGoogle Scholar
  60. Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267–294.  https://doi.org/10.1007/s00126-012-0446-z CrossRefGoogle Scholar
  61. Metcalfe, I., 2011. Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19(1): 3–21.  https://doi.org/10.1016/j.gr.2010.02.016 CrossRefGoogle Scholar
  62. Metcalfe, I., 2006. Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 9(1/2): 24–46.  https://doi.org/10.1016/j.gr.2005.04.002 CrossRefGoogle Scholar
  63. Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224.  https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  64. Miller, C. F., Stoddard, E. F., Bradfish, L. J., et al., 1981. Composition of Plutonic Muscovite, Genetic Implications. Canada Mineralogist, 19: 25–34Google Scholar
  65. Morley, C. K., 2012. Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia. Earth-Science Reviews, 115(1/2): 37–75.  https://doi.org/10.1016/j.earscirev.2012.08.002 CrossRefGoogle Scholar
  66. Munoz, J. L., 1992. Calculation of HF and HCl Fugacities from Biotite Compositions: Revised Equations. Geological Society of America: Abstracts with Programs, 24: 221Google Scholar
  67. Nachit, H., Ibhi, A., Abia, E. H., et al., 2005. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geoscience, 337(16): 1415–1420.  https://doi.org/10.1016/j.crte.2005.09.002 CrossRefGoogle Scholar
  68. Nowell, G. M., Kempton, P. D., Noble, S. R., et al., 1998. High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 149(3/4): 211–233.  https://doi.org/10.1016/s0009-2541(98)00036-9 CrossRefGoogle Scholar
  69. Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983.  https://doi.org/10.1093/petrology/25.4.956 CrossRefGoogle Scholar
  70. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81.  https://doi.org/10.1007/bf00384745 CrossRefGoogle Scholar
  71. Phan, T. T., Ngo, V. L., Nguyen, V. H., et al., 2012. Late Quaternary Tectonics and Seismotectonics along the Red River Fault Zone, North Vietnam. Earth-Science Reviews, 114(3/4): 224–235.  https://doi.org/10.1016/j.earscirev.2012.06.008 CrossRefGoogle Scholar
  72. Philpotts, J. A., Schnetzler, C. C., 1970. Phenocryst-Matrix Partition Coefficients for K, Rb, Sr and Ba, with Applications to Anorthosite and Basalt Genesis. Geochimica et Cosmochimica Acta, 34(3): 307–322.  https://doi.org/10.1016/0016-7037(70)90108-0 CrossRefGoogle Scholar
  73. Qiu, L., Yan, D. P., Yang, W. X., et al., 2016. Early to Middle Triassic Sedimentary Records in the Youjiang Basin, South China: Implications for Indosinian Orogenesis. Journal of Asian Earth Sciences, 141: 125–139.  https://doi.org/10.1016/j.jseaes.2016.09.020 CrossRefGoogle Scholar
  74. Rice, C. M., Darke, K. E., Still, J. W., et al., 1998. Tungsten-Bearing Rutile from the Kori Kollo Gold Mine, Bolivia. Mineralogical Magazine, 62(3): 421–429.  https://doi.org/10.1180/002646198547684 CrossRefGoogle Scholar
  75. Richards, J. P., Dang, G., Dudka, S. F., et al., 2003. The Nui Phao Tungsten-Fluorite-Copper-Gold-Bismuth Deposit, Northern Vietnam: An Opportunity for Sustainable Development. Exploration and Mining Geology, 12(1/2/3/4): 61–70.  https://doi.org/10.2113/0120061 Google Scholar
  76. Roger, F., Maluski, H., Lepvrier, C., et al., 2012. LA-ICPMS Zircons U/Pb Dating of Permo-Triassic and Cretaceous Magmatisms in Northern Vietnam--Geodynamical Implications. Journal of Asian Earth Sciences, 48: 72–82.  https://doi.org/10.1016/j.jseaes.2011.12.012 CrossRefGoogle Scholar
  77. Roger, F., Leloup, P. H., Jolivet, M., et al., 2000. Long and Complex Thermal History of the Song Chay Metamorphic Dome (Northern Vietnam) by Multi-System Geochronology. Tectonophysics, 321(4): 449–466.  https://doi.org/10.1016/s0040-1951(00)00085-8 CrossRefGoogle Scholar
  78. Romer, R. L., Kroner, U., 2016. Phanerozoic Tin and Tungsten Mineralization—Tectonic Controls on the Distribution of Enriched Protoliths and Heat Sources for Crustal Melting. Gondwana Research, 31: 60–95.  https://doi.org/10.1016/j.gr.2015.11.002 CrossRefGoogle Scholar
  79. Sanematsu, K., Ishihara, S., 2011. 40Ar/39Ar Ages of the Da Lien Granite Related to the Nui Phao W Mineralization in Northern Vietnam. Resource Geology, 61(3): 304–310.  https://doi.org/10.1111/j.1751-3928.2011.00167.x CrossRefGoogle Scholar
  80. Scherer, E., Münker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530): 683–687.  https://doi.org/10.1126/science.1061372 CrossRefGoogle Scholar
  81. Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen: A Potential Tectonomagmatic Indicator?. The Canadian Mineralogist, 41(6): 1381–1396.  https://doi.org/10.2113/gscanmin.41.6.1381 CrossRefGoogle Scholar
  82. Sheng, J. F., Liu, L. J., Wang, D., et al., 2015. A Preliminary Review of Metallogenic Regularity of Tungsten Deposits in China. Acta Geologica Sinica--English Edition, 89(4): 1359–1374.  https://doi.org/10.1111/1755-6724.12533 CrossRefGoogle Scholar
  83. Stussi, J. M., Cuney, M., 1996. Nature of Biotites from Alkaline, Calc-Alkaline and Peraluminous Magmas by Abdel-Fattah M. Abdel-Rahman: A Comment. Journal of Petrology, 37(5): 1025–1029.  https://doi.org/10.1093/petrology/37.5.1025 CrossRefGoogle Scholar
  84. Sun, W. D., 2016. Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 35(3): 215–225.  https://doi.org/10.1007/s11631-016-0110-x CrossRefGoogle Scholar
  85. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345.  https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  86. Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44.  https://doi.org/10.1016/s0024-4937(98)00024-3 Google Scholar
  87. Tapponnier, P., Lacassin, R., Leloup, P., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437.  https://doi.org/10.1038/343431a0 CrossRefGoogle Scholar
  88. Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 57–72Google Scholar
  89. Teixeira, R. J. S., Neiva, A. M. R., Gomes, M. E. P., et al., 2012. The Role of Fractional Crystallization in the Genesis of Early Syn-D3, Tin-Mineralized Variscan Two-Mica Granites from the Carrazeda de Ansiães Area, Northern Portugal. Lithos, 153: 177–191.  https://doi.org/10.1016/j.lithos.2012.04.024 CrossRefGoogle Scholar
  90. Thanh, N. X., Hai, T. T., Hoang, N., et al., 2014. Backarc Mafic-Ultramafic Magmatism in Northeastern Vietnam and Its Regional Tectonic Significance. Journal of Asian Earth Sciences, 90: 45–60.  https://doi.org/10.1016/j.jseaes.2014.04.001 CrossRefGoogle Scholar
  91. Thanh, N. X., Tu, M. T., Itaya, T., et al., 2011. Chromian-Spinel Compositions from the Bo Xinh Ultramafics, Northern Vietnam: Implications on Tectonic Evolution of the Indochina Block. Journal of Asian Earth Sciences, 42(3): 258–267.  https://doi.org/10.1016/j.jseaes.2011.02.004 CrossRefGoogle Scholar
  92. Tri, T. V., Khuc, V., 2011. Geology and Earth Resources of Vietnam. General Dept of Geology, and Minerals of Vietnam. Publishing House for Science and Technology, HanoiGoogle Scholar
  93. Tri, T. V., 1979. Geology of Vietnam: the North Part. Explanatory Note to the Geological Map on 1: 1 000 000 Scales. Science and Technology. Publish House, Hanoi. 345 (in Vietnamese), 78 (in English)Google Scholar
  94. Vladimirov, A. G., Anh, P. L., Kruk, N. N., et al., 2012. Petrology of the Tin-Bearing Granite-Leucogranites of the Piaoak Massif, Northern Vietnam. Petrology, 20(6): 545–566.  https://doi.org/10.1134/s0869591112050074 CrossRefGoogle Scholar
  95. Wang, D. S., Liu, J. L., Tran, M., et al., 2011. Geochronology, Geochemistry and Tectonic Significance of Granites in the Tinh Tuc Sn-W Deposits, Northeast Vietnam. Acta Petrologica Sinica, 27: 2795–2808 (in Chinese with English Abstract).Google Scholar
  96. Wang, D. Z., Liu, C. S., Shen, W. Z., et al., 1993. The Contrast between Tonglu I-Type and Xiangshan S-Type Clasto-Porphyritic Lava. Acta Petrologica Sinica, 9 (1): 44–53 (in Chinese with English Abstract)Google Scholar
  97. Wang, P. L., Lo, C. H., Chung, S. L., et al., 2000. Onset Timing of Left-Lateral Movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar Dating Constraint from the Nam Dinh Area, Northeastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281–292.  https://doi.org/10.1016/s1367-9120(99)00064-4 CrossRefGoogle Scholar
  98. Wang, X. Y., Yang, Z., Chen, N. S., et al., 2018. Petrogenesis and Ore Genesis of the Late Yanshanian Granites and Associated Porphyry-Skarn W-Mo Deposits from the Yunkai Area of South China: Evidence from the Zircon U-Pb Ages, Hf Isotopes and Sulfide S-Fe Isotopes. Journal of Earth Science, 29(4): 939–959.  https://doi.org/10.1007/s12583-017-0901-1 CrossRefGoogle Scholar
  99. Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304.  https://doi.org/10.1016/0012-821x(83)90211-x CrossRefGoogle Scholar
  100. Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419.  https://doi.org/10.1007/bf00402202 CrossRefGoogle Scholar
  101. Whalen, J. B., 1985. Geochemistry of an Island-Arc Plutonic Suite: The Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G.. Journal of Petrology, 26(3): 603–632.  https://doi.org/10.1093/petrology/26.3.603 CrossRefGoogle Scholar
  102. White, A. J. R., 1979. Sources of Granitic Magma. Abstracts of Papers to be Presented at the Annual Meetings of the Geological Society of America and Associated Societies, November 5–8, 1979, San Diego, California. 11: 539Google Scholar
  103. Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23.  https://doi.org/10.1111/j.1751-908x.1995.tb00147.x CrossRefGoogle Scholar
  104. Wones, D. R., Eugster, H. P., 1965. Stability of Biotite: Experiment, Theory, and Application. American Mineralogist, 50: 1228-1272Google Scholar
  105. Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126.  https://doi.org/10.1016/j.chemgeo.2006.05.003 CrossRefGoogle Scholar
  106. Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218/219: 54–72.  https://doi.org/10.1016/j.lithos.2015.01.004 CrossRefGoogle Scholar
  107. Yan, D. P., Zhou, M. F., Wang, Y., 2005. Structural Styles and Chronological Evidences from Dulong-Song Chay Tectonic Dome: Earlier Spreading of South China Sea Basin Due to Late Mesozoic to Early Cenozoic Extension of South China Block. Earth Science--Journal of China University of Geosciecnces, 30(4): 402–412Google Scholar
  108. Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141–2145.  https://doi.org/10.1016/0016-7037(90)90277-r CrossRefGoogle Scholar
  109. Zhang, R. Y., Lo, C. H., Chung, S. L., et al., 2013. Origin and Tectonic Implication of Ophiolite and Eclogite in the Song Ma Suture Zone between the South China and Indochina Blocks. Journal of Metamorphic Geology, 31(1): 49–62.  https://doi.org/10.1111/jmg.12012 CrossRefGoogle Scholar
  110. Zhao, K. D., Jiang, S. Y., Jiang, Y. H., et al., 2005. Mineral Chemistry of the Qitianling Granitoid and the Furong Tin Ore Deposit in Hunan Province, South China: Implication for the Genesis of Granite and Related Tin Mineralization. European Journal of Mineralogy, 17(4): 635–648.  https://doi.org/10.1127/0935-1221/2005/0017-0635 CrossRefGoogle Scholar
  111. Zhao, Z. Y., Hou, L., Ding, J., et al., 2018. A Genetic Link between Late Cretaceous Granitic Magmatism and Sn Mineralization in the Southwestern South China Block: A Case Study of the Dulong Sn-Dominant Polymetallic Deposit. Ore Geology Reviews, 93: 268–289.  https://doi.org/10.1016/j.oregeorev.2017.12.020 CrossRefGoogle Scholar
  112. Zhou, Z. X., 1986. The Origin of Intrusive Mass in Fengshandong, Hubei Province. Acta Petrologica Sinica, 2: 59–70 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institute of Geological SciencesVietnam Academy of Science and Technology (VAST)HanoiVietnam
  3. 3.Department of GeologyHanoi University of Mining and GeologyHanoiVietnam
  4. 4.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea

Personalised recommendations