Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 70–79 | Cite as

Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition

  • Hai Jiang
  • Shao-Yong JiangEmail author
  • Wenqian LiEmail author
  • Kuidong Zhao
Article
  • 7 Downloads

Abstract

The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Carboniferous metasedimentary rocks of Mergui Series. According to mineral assemblages and crosscutting relationships, four ore-forming stages are recognized: (1) silicate-oxide stage; (2) quartz-sulfide stage; (3) barren quartz vein stage; (4) supergene stage. Five molybdenite samples from the deposit yield Re-Os model ages ranging from 67.8±1.6 to 69.2±1.6 Ma (weighted mean age of 68.7±1.2 Ma), and a well-defined isochron age of 68.4±2.5 Ma (MSWD=0.18, 2σ). This Re-Os age is consistent with the previously published zircon U-Pb age of the Hermyingyi monzogranite (70.0±0.4 Ma) (MSWD=0.9, 2σ) within errors, which indicates a genetic link between the monzogranitic magmatism and W-Sn mineralization. The new high-precision geochronological data reveal that the granitic magmatism and associated W-Sn mineralization in southern Myanmar took place during the Late Cretaceous (70-68 Ma). The extremely low Re contents (22.9 ppb to 299 ppb) in molybdenite, coupled with sulfide δ34S values in the range of +1.9‰ to +5.6‰ suggest that ore-forming metals were predominately sourced from the crustal-derived granitic magma.

Key words

Hermyingyi W-Sn deposit molybdenite Re-Os dating sulfur isotopes Myanmar SE Asia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study is financially supported by the National Key R&D Program of China (No. 2017YFC0602405), the National Natural Science Foundation of China (Nos. 41503043, 91755208), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR03-2). We are very grateful to Tenwin-Pacific Brothers Mining Services Company Limited for field assistance. Special thanks are extended to two anonymous reviewers for their constructive comments and suggestions. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0860-y.

References Cited

  1. Allen, R., Najman, Y., Carter, A., et al., 2008. Provenance of the Tertiary Sedimentary Rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman Arc or Himalayan-Derived?. Journal of the Geological Society, 165: 1045–1057.  https://doi.org/10.1144/0016-76492007-143 CrossRefGoogle Scholar
  2. Barber, A. J., Crow, M. J., 2003. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 6(1): 1–28.  https://doi.org/10.1016/s1342-937x(05)70642-0 CrossRefGoogle Scholar
  3. Barber, A. J., Crow, M. J., 2009. Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys. Island Arc, 18(1): 3–20.  https://doi.org/10.1111/j.1440-1738.2008.00631.x CrossRefGoogle Scholar
  4. Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 1019.  https://doi.org/10.1029/2002tc001398 Google Scholar
  5. Berzina, A. N., Sotnikov, V. I., Economou-Eliopoulos, M., et al., 2005. Distribution of Rhenium in Molybdenite from Porphyry Cu-Mo and Mo-Cu Deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1/2): 91–113.  https://doi.org/10.1016/j.oregeorev.2004.12.002 CrossRefGoogle Scholar
  6. Charusiri, P., Clark, A. H., Farrar, E., et al., 1993. Granite Belts in Thailand: Evidence from the 40Ar/39Ar Geochronological and Geological Syn theses. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 127–136.  https://doi.org/10.1016/0743-9547(93)90014-g Google Scholar
  7. Chen, X. C., Hu, R. Z., Bi, X. W., et al., 2014. Cassiterite LA-MC-ICP-MS U/Pb and Muscovite 40Ar/39Ar Dating of Tin Deposits in the Tengchong-Lianghe Tin District, NW Yunnan, China. Mineralium Deposita, 49(7): 843–860.  https://doi.org/10.1007/s00126-014-0513-8 CrossRefGoogle Scholar
  8. Chen, X. C., Hu, R. Z., Bi, X. W., et al., 2015. Petrogenesis of Metaluminous A-Type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China: Evidences from Zircon U-Pb Ages and Hf-O Isotopes, and Whole-Rock Sr-Nd Isotopes. Lithos, 212–215: 93–110.  https://doi.org/10.1016/j.lithos.2014.11.010 Google Scholar
  9. Cobbing, E. J., Mallick, D. I. J., Pitfield, P. E. J., et al., 1986. The Granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 143(3): 537–550.  https://doi.org/10.1144/gsjgs.143.3.0537 CrossRefGoogle Scholar
  10. Du, A. D., Wu, S. Q., Sun, D. Z., et al., 2004. Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 28(1): 41–52.  https://doi.org/10.1111/j.1751-908x.2004.tb01042.x CrossRefGoogle Scholar
  11. Feng, C. Y., Zeng, Z. L., Zhang, D. Q., et al., 2011. SHRIMP Zircon U-Pb and Molybdenite Re-Os Isotopic Dating of the Tungsten Deposits in the Tianmenshan-Hongtaoling W-Sn Orefield, Southern Jiangxi Province, China, and Geological Implications. Ore Geology Reviews, 43(1): 8–25.  https://doi.org/10.1016/j.oregeorev.2011.04.006 CrossRefGoogle Scholar
  12. Gardiner, N. J., Hawkesworth, C. J., Robb, L. J., et al., 2017. Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Scientific Reports, 7(1): 748.  https://doi.org/10.1038/s41598-017-00832-2 CrossRefGoogle Scholar
  13. Gardiner, N. J., Robb, L. J., Morley, C. K., et al., 2016. The Tectonic and Metallogenic Framework of Myanmar: A Tethyan Mineral System. Ore Geology Reviews, 79: 26–45.  https://doi.org/10.1016/j.oregeorev.2016.04.024 CrossRefGoogle Scholar
  14. Gardiner, N. J., Robb, L. J., Searle, M. P., 2014. The Metallogenic Provinces of Myanmar. Applied Earth Science, 123(1): 25–38.  https://doi.org/10.1179/1743275814y.0000000049 CrossRefGoogle Scholar
  15. Gardiner, N. J., Searle, M. P., Robb, L. J., et al., 2015. Neo-Tethyan Magmatism and Metallogeny in Myanmar--An Andean Analogue?. Journal of Asian Earth Sciences, 106: 197–215.  https://doi.org/10.1016/j.jseaes.2015.03.015 CrossRefGoogle Scholar
  16. Grassineau, N. V., Mattey, D. P., Lowry, D., 2001. Sulfur Isotope Analysis of Sulfide and Sulfate Minerals by Continuous Flow-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 73(2): 220–225.  https://doi.org/10.1021/ac000550f CrossRefGoogle Scholar
  17. Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20: 353–431.  https://doi.org/10.1016/s1367-9120(01)00069-4 CrossRefGoogle Scholar
  18. Hou, Z. Q., Zaw, K., Pan, G. T., et al., 2007. Sanjiang Tethyan Metallogenesis in S.W. China: Tectonic Setting, Metallogenic Epochs and Deposit Types. Ore Geology Reviews, 31(1/2/3/4): 48–87.  https://doi.org/10.1016/j.oregeorev.2004.12.007 Google Scholar
  19. Hu, R. Z., Wei, W. F., Bi, X. W., et al., 2012. Molybdenite Re-Os and Muscovite 40Ar/39Ar Dating of the Xihuashan Tungsten Deposit, Central Nanling District, South China. Lithos, 150: 111–118.  https://doi.org/10.1016/j.lithos.2012.05.015 CrossRefGoogle Scholar
  20. Hutchison, C. S., Taylor, D., 1978. Metallogenesis in SE Asia. Journal of the Geological Society, 135(4): 407–428.  https://doi.org/10.1144/gsjgs.135.4.0407 CrossRefGoogle Scholar
  21. Jiang, H., Li, W. Q., Jiang, S.-Y., et al., 2017. Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Petrogenesis of Late Cretaceous A-Type Granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos, 268–271: 32–47.  https://doi.org/10.1016/j.lithos.2016.11.005 CrossRefGoogle Scholar
  22. Khan, P. K., Shamim, S., Mohanty, M., et al., 2017. Myanmar-Andaman-Sumatra Subduction Margin Revisited: Insights of Arc-Specific Deformations. Journal of Earth Science, 28(4): 683–694.  https://doi.org/10.1007/s12583-017-0752-6 CrossRefGoogle Scholar
  23. Li, J., Sun, Y. L., He, K., et al., 2010. The Improved Molybdenite Re-Os Dating Method and Its Applications. Acta Petrologica Sinica, 26(2): 642–648 (in Chinese with English Abstract)Google Scholar
  24. Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Cassiterite and Zircon from the Dulong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 23: 967–976 (in Chinese with English Abstract)Google Scholar
  25. Ludwig, K. R., 2003. User’s Manual for Isoplot/Ex Version 3.00. In: Ludwig, K. R., ed., A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 41–70Google Scholar
  26. Ma, N., Deng, J., Wang, Q. F., et al., 2013. Geochronology of the Dasongpo Tin Deposit, Yunnan Province: Evidence from Zircon LA-ICP-MS U-Pb Ages and Cassiterite LA-MC-ICP-MS U-Pb Age. Acta Petrologica Sinica, 29(4): 1223–1235 (in Chinese with English Abstract)Google Scholar
  27. Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267–294.  https://doi.org/10.1007/s00126-012-0446-z CrossRefGoogle Scholar
  28. Mao, J. W., Zhang, Z. C., Zhang, Z. H., et al., 1999. Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 63(11/12): 1815–1818.  https://doi.org/10.1016/s0016-7037(99)00165-9 Google Scholar
  29. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33.  https://doi.org/10.1016/j.jseaes.2012.12.020 CrossRefGoogle Scholar
  30. Mitchell, A. H. G., 1993. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 150: 1089–1102.  https://doi.org/10.1144/gsjgs.150.6.1089 CrossRefGoogle Scholar
  31. Mitchell, A. H. G., Chung, S. L., Oo, T., et al., 2012. Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean?. Journal of Asian Earth Sciences, 56: 1–23.  https://doi.org/10.1016/j.jseaes.2012.04.019 CrossRefGoogle Scholar
  32. Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551–578.  https://doi.org/10.2113/gsecongeo.67.5.551 CrossRefGoogle Scholar
  33. Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits (2nd Edition). John Wiley and Sons, New York. 509–567Google Scholar
  34. Oo, T., Hlaing, T., Htay, N., 2002. Permian of Myanmar. Journal of Asian Earth Sciences, 20(6): 683–689.  https://doi.org/10.1016/S1367-9120(01)00074-8 CrossRefGoogle Scholar
  35. Peng, J. T., Zhou, M. F., Hu, R. Z., et al., 2006. Precise Molybdenite Re-Os and Mica Ar-Ar Dating of the Mesozoic Yaogangxian Tungsten Deposit, Central Nanling District, South China. Mineralium Deposita, 41(7): 661–669.  https://doi.org/10.1007/s00126-006-0084-4 CrossRefGoogle Scholar
  36. Qi, L., Zhou, M. F., Gao, J. F., et al., 2010. An Improved Carius Tube Technique for Determination of Low Concentrations of Re and Os in Pyrites. Journal of Analytical Atomic Spectrometry, 25(4): 585–589.  https://doi.org/10.1039/b919016c CrossRefGoogle Scholar
  37. Schwartz, M. O., Rajah, S. S., Askury, A. K., et al., 1995. The Southeast Asian Tin Belt. Earth-Science Reviews, 38(2/3/4): 95–293.  https://doi.org/10.1016/0012-8252(95)00004-t Google Scholar
  38. Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3): TC3014.  https://doi.org/10.1029/2006tc002083 Google Scholar
  39. Shirey, S. B., Walker, R. J., 1995. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 67(13): 2136–2141.  https://doi.org/10.1021/ac00109a036 CrossRefGoogle Scholar
  40. Smoliar, M. I., Walker, R. J., Morgan, J. W., 1996. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 271(5252): 1099–1102.  https://doi.org/10.1126/science.271.5252.1099 CrossRefGoogle Scholar
  41. Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166–179.  https://doi.org/10.1016/j.crte.2007.09.008 CrossRefGoogle Scholar
  42. Stein, H. J., Markey, R. J., Morgan, J. W., et al., 2001. The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 13(6): 479–486.  https://doi.org/10.1046/j.1365-3121.2001.00395.x CrossRefGoogle Scholar
  43. Stein, H. J., Sundblad, K., Markey, R. J., et al., 1998. Re-Os Ages for Archean Molybdenite and Pyrite, Kuittila-Kivisuo, Finland and Proterozoic Molybdenite, Kabeliai, Lithuania: Testing the Chronometer in a Metamorphic and Metasomatic Setting. Mineralium Deposita, 33(4): 329–345.  https://doi.org/10.1007/s001260050153 CrossRefGoogle Scholar
  44. Suzuki, K., Shimizu, H., Masuda, A., 1996. Re-Os Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 60(16): 3151–3159.  https://doi.org/10.1016/0016-7037(96)00164-0 CrossRefGoogle Scholar
  45. Than Htun, Than Htay, Zaw, K., 2017. Tin-Tungsten Deposits of Myanmar. Geological Society, London, Memoirs, 48: 625–647.  https://doi.org/10.1144/M48.28 CrossRefGoogle Scholar
  46. Yang, Z. X., Mao, J. W., Chen, M. H., et al., 2008. Re-Os Dating of Molybdenite from the Kafang Skarn Copper (Tin) Deposit in the Gejiu Tin Polymetallic Ore Distric and Its Geological Significance. Acta Petrologica Sinica, 24: 1937–1944 (in Chinese with English Abstract)Google Scholar
  47. Yang, Z., Jiang, H., Yang, G. M., et al., 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339–356.  https://doi.org/10.3799/dqkx.2017.026 (in Chinese with English Abstract)Google Scholar
  48. York, D., 1968. Least Squares Fitting of a Straight Line with Correlated Errors. Earth and Planetary Science Letters, 5: 320–324.  https://doi.org/10.1016/s0012-821x(68)80059-7 CrossRefGoogle Scholar
  49. Zaw, K., 1978. Fluid Inclusion Studies on the Hermyingyi Tungsten-Tin Deposit, Southern Burma. In: Prinya, N., ed,. Proceedings of the Third Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok. 393–397Google Scholar
  50. Zaw, K., 1984. Geology and Geothermometry of Vein-Type W-Sn Deposits at Pennaichaung and Yetkanzintaung Prospects, Tavoy Township, Tennasserim Division, Southern Burma. Mineralium Deposita, 19(2): 138–144.  https://doi.org/10.1007/bf00204675 CrossRefGoogle Scholar
  51. Zaw, K., 1990. Geological, Petrological and Geochemical Characteristics of Granitoid Rocks in Burma: With Special Reference to the Associated W-Sn Mineralization and Their Tectonic Setting. Journal of Southeast Asian Earth Sciences, 4(4): 293–335.  https://doi.org/10.1016/0743-9547(90)90004-w CrossRefGoogle Scholar
  52. Zaw, K., Khin Myo Thet, 1983. A Note on a Fluid Inclusion Study of Tin-Tungsten Mineralization at Mawchi Mine, Kayah State, Burma. Economic Geology, 78(3): 530–534.  https://doi.org/10.2113/gsecongeo.78.3.530 CrossRefGoogle Scholar
  53. Zaw, K., Meffre, S., Lai, C. K., et al., 2014. Tectonics and Metallogeny of Mainland Southeast Asi—A Review and Contribution. Gondwana Research, 26(1): 5–30.  https://doi.org/10.1016/j.gr.2013.10.010 CrossRefGoogle Scholar
  54. Zhang, R. Q., Lu, J. J., Wang, R. C., et al., 2015. Constraints of in Situ Zircon and Cassiterite U-Pb, Molybdenite Re-Os and Muscovite 40Ar-39Ar Ages on Multiple Generations of Granitic Magmatism and Related W-Sn Mineralization in the Wangxianling Area, Nanling Range, South China. Ore Geology Reviews, 65: 1021–1042.  https://doi.org/10.1016/j.oregeorev.2014.09.021 CrossRefGoogle Scholar
  55. Zhang, X. B., Wang, K. Y., Wang, C. Y., et al., 2017. Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 28(3): 433–446.  https://doi.org/10.1007/s12583-016-0934-1 CrossRefGoogle Scholar
  56. Zhang, Z., Song, J. L., Tang, J. X., et al., 2017. Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. Earth Science, 42(6): 862–880.  https://doi.org/10.3799/dqkx.2017.523 (in Chinese with English Abstract)Google Scholar
  57. Zhao, W. W., Zhou, M. F., Li, Y. H. M., et al., 2017. Genetic Types, Mineralization Styles, and Geodynamic Settings of Mesozoic Tungsten Deposits in South China. Journal of Asian Earth Sciences, 137: 109–140.  https://doi.org/10.1016/j.jseaes.2016.12.047 CrossRefGoogle Scholar
  58. Zheng, W., Mao, J. W., Zhao, H. J., et al., 2017. Geochemistry, Sr-Nd-Pb-Hf Isotopes Systematics and Geochronological Constrains on Petrogenesis of the Xishan A-Type Granite and Associated W-Sn Mineralization in Guangdong Province, South China. Ore Geology Reviews, 88: 739–752.  https://doi.org/10.1016/j.oregeorev.2016.12.021 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  2. 2.Faculty of Earth Resources, Collaborative Innovation Center for Exploration of Strategic Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations