Advertisement

A Review of Ultrahigh Temperature Metamorphism

  • Hengcong Lei
  • Haijin Xu
Article
  • 27 Downloads

Abstract

Ultrahigh-temperature (UHT) metamorphism represents extreme crustal metamorphism with peak metamorphic temperatures exceeding 900 ºC and pressures ranging from 7 to 13 kbar with or without partial melting of crusts, which is usually identified in the granulite-facies rocks. UHT rocks are recognized in all major continents related to both extensional and compressive tectonic environments. UHT metamorphism spans different geological ages from Archean to Phanerozoic, providing information of the nature, petrofabric and thermal evolution of crusts. UHT metamorphism is traditionally identified by the presence of a diagnostic mineral assemblage with an appropriate bulk composition and oxidation state in Mg-Al-rich metapelite rocks. Unconventional geothermobarometers including Ti-in-zircon (TIZ) and Zr-in-rutile (ZIR) thermometers and phase equilibria modeling are increasingly being used to estimate UHT metamorphism. Concentrated on the issues about UHT metamorphism, this review presents the research history about UHT metamorphism, the global distribution of UHT rocks, the current methods for constraints on the UHT metamorphism, and the heat sources and tectonic settings of UHT metamorphism. Some key issues and prospects about the study of UHT metamorphism are discussed, e.g., identification of UHT metamorphism for non-supracrustal rocks, robustness of the unconventional geothermometers, tectonic affinity of UHT metamorphic rocks, and methods for the constraints of age and duration of UHT metamorphism. It is concluded that UHT metamorphism is of great importance to the understanding of thermal evolution of the lithosphere.

Key Words

ultrahigh-temperature (UHT) granulite-facies metamorphism review 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 41772054, 41572039 and 41372076) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGQYZX1704). We thank Prof. Jingbo Liu and other two anonymous reviewers for offering constructive comments, which have helped us to improve the manuscript greatly. The final publication is available at Springer via  https://doi.org/10.1007/s12583-018-0846-9.

Supplementary material

12583_2018_846_MOESM1_ESM.doc (224 kb)
Locations of known UHT occurrences and the corresponding studies

References Cited

  1. Adjerid, Z., Godard, G., Ouzegane, K., et al., 2013. Multistage Progressive Evolution of Rare Osumilite-Bearing Assemblages Preserved in Ultrahigh-Temperature Granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology, 31(5): 505–524. https://doi.org/10.1111/jmg.12031 CrossRefGoogle Scholar
  2. Arima, M., Gower, C. F., 1991. Osumilite-Bearing Granulites in the Eastern Grenville Province, Eastern Labrador, Canada: Mineral Parageneses and Metamorphic Conditions. Journal of Petrology, 32(1): 29–61. https://doi.org/10.1093/petrology/32.1.29 CrossRefGoogle Scholar
  3. Baba, S., Hokada, T., Kaiden, H., et al., 2010. SHRIMP Zircon U-Pb Dating of Sapphirine-Bearing Granulite and Biotite-Hornblende Gneiss in the Schirmacher Hills, East Antarctica: Implications for Neoproterozoic Ultrahigh-Temperature Metamorphism Predating the Assembly of Gondwana. The Journal of Geology, 118(6): 621–639. https://doi.org/10.1086/656384 CrossRefGoogle Scholar
  4. Baba, S., Owada, M., Grew, E. S., et al., 2006. Sapphirine Granulite from Schirmacher Hills, Central Dronning Maud Land. In: Fütterer, D. K., Damaske, D., Kleinschmidt, G., et al., eds., Antarctic Contributions to Global Earth Science. Springer, Berlin. 37–44Google Scholar
  5. Baldwin, J. A., Brown, M., 2008. Age and Duration of Ultrahigh-Temperature Metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, Central Brazil—Constraints from U-Pb Geochronology, Mineral Rare Earth Element Chemistry and Trace-Element Thermometry. Journal of Metamorphic Geology, 26(2): 213–233. https://doi.org/10.1111/j.1525-1314.2007.00759.x CrossRefGoogle Scholar
  6. Baldwin, J. A., Brown, M., Schmitz, M. D., 2007. First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism. Geology, 35(4): 295–298. https://doi.org/10.1130/g23285a.1 CrossRefGoogle Scholar
  7. Barbosa, J., Nicollet, C., Leite, C., et al., 2006. Hercynite-Quartz-Bearing Granulites from Brejões Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 92(3/4): 537–556. https://doi.org/10.1016/j.lithos.2006.03.064 CrossRefGoogle Scholar
  8. Barnicoat, A. C., OʼHara, M. J., 1979. High-Temperature Pyroxenes from an Ironstone at Scourie, Sutherland. Mineralogical Magazine, 43(327): 371–375. https://doi.org/10.1180/minmag.1979.043.327.09 CrossRefGoogle Scholar
  9. Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445–522. https://doi.org/10.1093/petrology/29.2.445 CrossRefGoogle Scholar
  10. Bertrand, P., Ouzegane, K., Kienast, J. R., 1992. P-T-X Relationships in the Precambrian Al-Mg-Rich Granulites from in Ouzzal, Hoggar, Algeria. Journal of Metamorphic Geology, 10(1): 17–31. https://doi.org/10.1111/j.1525-1314.1992.tb00069.x CrossRefGoogle Scholar
  11. Bhadra, S., 2016. Timing and Duration of Ultra-High Temperature Metamorphism in Sapphirine-Bearing Metapelite Granulite from Kodaikanal, Madurai Block, South India: Constraints from Mineral Chemistry and U-Th-Total Pb EPMA Age of Monazite. Journal of Applied Geochemistry, 18(1): 22Google Scholar
  12. Bhowmik, S. K., Wilde, S. A., Bhandari, A., et al., 2014. Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: An Example from the Central Indian Tectonic Zone. Journal of Petrology, 55(3): 585–621. https://doi.org/10.1093/petrology/egt078 CrossRefGoogle Scholar
  13. Bradley, D., Kusky, T. M., Haeussler, P., et al., 2003. Geological Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacifica Margin. Geological Society of America Special Paper, 371: 19–49Google Scholar
  14. Brandt, S., Klemd, R., Okrusch, M., 2003. Ultrahigh-Temperature Metamorphism and Multistage Evolution of Garnet-Orthopyroxene Granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 44(6): 1121–1144. https://doi.org/10.1093/petrology/44.6.1121 CrossRefGoogle Scholar
  15. Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961–964. https://doi.org/10.1130/g22853a.1 CrossRefGoogle Scholar
  16. Brown, M., 2007a. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193–234. https://doi.org/10.2747/0020-6814.49.3.193 CrossRefGoogle Scholar
  17. Brown, M., 2007b. Metamorphism, Plate Tectonics, and the Supercontinent Cycle. Earth Science Frontiers, 14(1): 1–18. https://doi.org/10.1016/s1872-5791(07)60001-3 CrossRefGoogle Scholar
  18. Brown, M., 2009. Metamorphic Patterns in Orogenic Systems and the Geological Record. Geological Society, London, Special Publications, 318(1): 37–74. https://doi.org/10.1144/sp318.2 CrossRefGoogle Scholar
  19. Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. https://doi.org/10.1016/j.gsf.2014.02.005 CrossRefGoogle Scholar
  20. Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75–95. https://doi.org/10.1111/j.1525-1314.2005.00563.x CrossRefGoogle Scholar
  21. Bushmin, S. A., Dolivo-Dobrovolsky, D. V., Lebedeva, Y. M., 2007. Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt. Doklady Earth Sciences, 412(1): 106–109. https://doi.org/10.1134/s1028334x07010242 CrossRefGoogle Scholar
  22. Carrington, D. P., Harley, S. L., 1995. Partial Melting and Phase Relations in High-Grade Metapelites: An Experimental Petrogenetic Grid in the KFMASH System. Contributions to Mineralogy and Petrology, 120(3/4): 270–291. https://doi.org/10.1007/s004100050075 CrossRefGoogle Scholar
  23. Chen, Z. Y., Zhang, L. F., Du, J. X., et al., 2013. Zr-in-Rutile Thermometry in Eclogite and Vein from Southwestern Tianshan, China. Journal of Asian Earth Sciences, 63: 70–80. https://doi.org/10.1016/j.jseaes.2012.09.033 CrossRefGoogle Scholar
  24. Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot?. Elements, 7(4): 235–240. https://doi.org/10.2113/gselements.7.4.235 CrossRefGoogle Scholar
  25. Collins, W. J., 2002a. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091-7613(2002)030<0535:hotsac>2.0.co;2CrossRefGoogle Scholar
  26. Collins, W. J., 2002b. Nature of Extensional Accretionary Orogens. Tectonics, 21(4): 6–1–6-12. https://doi.org/10.1029/2000tc001272 CrossRefGoogle Scholar
  27. Dallwitz, W. B., 1968. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 219(5153): 476–477. https://doi.org/10.1038/219476a0 CrossRefGoogle Scholar
  28. Dasgupta, S., Pal, S., 2005. Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral-Fluid Equilibria and Petrogenetic Grids. Journal of Petrology, 46(5): 1045–1076. https://doi.org/10.1093/petrology/egi010 CrossRefGoogle Scholar
  29. Dasgupta, S., Sengupta, P., Ehl, J., et al., 1995. Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India: Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 36(2): 435–461. https://doi.org/10.1093/petrology/36.2.435 CrossRefGoogle Scholar
  30. Degeling, H. S., 2003. Zr Equilibria in Metamorphic Rocks: [Dissertation]. Australian National University, Melbourne. 231Google Scholar
  31. Diener, J. F. A., Powell, R., 2012. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 30(2): 131–142. https://doi.org/10.1111/j.1525-1314.2011.00959.x CrossRefGoogle Scholar
  32. Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgOAl2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x CrossRefGoogle Scholar
  33. Ellis, D. J., 1980. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica: P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 74(2): 201–210. https://doi.org/10.1007/bf01132005 CrossRefGoogle Scholar
  34. Ewing, T. A., Hermann, J., Rubatto, D., 2013. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 165(4): 757–779. https://doi.org/10.1007/s00410-012-0834-5 CrossRefGoogle Scholar
  35. Ferrero, S., Axler, J., Ague, J. J., et al., 2017. Preserved Anatectic Melt in Ultrahigh-Temperature (or High Pressure?) Felsic Granulites, Connecticut, US. EGU General Assembly Conference Abstracts, 19: 9692Google Scholar
  36. Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  37. Fitzsimons, I. C. W., Harley, S. L., 1994. Garnet Coronas in Scapolite-Wollastonite Calc-Silicates from East Antarctica: The Application and Limitations of Activity-Corrected Grids. Journal of Metamorphic Geology, 12(6): 761–777. https://doi.org/10.1111/j.1525-1314.1994.tb00058.x CrossRefGoogle Scholar
  38. Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 97(4): 435–450. https://doi.org/10.1086/629321 CrossRefGoogle Scholar
  39. Ganguly, P., Bose, S., Das, K., et al., 2018. Origin of Spinel+Quartz Assemblage in a Si-Undersaturated Ultrahigh-Temperature Aluminous Granulite and Its Implication for the P-T-Fluid History of the Phulbani Domain, Eastern Ghats Belt, India. Journal of Petrology, 58(10): 1941–1974. https://doi.org/10.13039/501100001501 CrossRefGoogle Scholar
  40. Gorczyk, W., Smithies, H., Korhonen, F., et al., 2016. Ultra-Hot Mesoproterozoic Evolution of Intracontinental Central Australia. Geoscience Frontiers, 6(1): 23–37. https://doi.org/10.13039/501100000923 CrossRefGoogle Scholar
  41. Gou, L. L., Zhang, C. L., Wang, Q., 2015. Petrological Evidence for Isobaric Cooling of Ultrahigh-Temperature Pelitic Granulites from the Khondalite Belt, North China Craton. Science Bulletin, 60(17): 1535–1542. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  42. Green, E. C. R., Holland, T. J. B., Powell, R., 2007. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 92(7): 1181–1189. https://doi.org/10.2138/am.2007.2401 CrossRefGoogle Scholar
  43. Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–869. https://doi.org/10.13039/100004807 CrossRefGoogle Scholar
  44. Grew, E. S., 1982. Osumilite in the Sapphirine-Quartz Terrane of Enderby Land, Antarctica: Implications for Osumilite Petrogenesis in the Granulite Facies. American Mineralogist, 67: 762–787Google Scholar
  45. Groppo, C., Lombardo, B., Rolfo, F., et al., 2007. Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51–75. https://doi.org/10.1111/j.1525-1314.2006.00678.x CrossRefGoogle Scholar
  46. Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93–1.92Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222/223: 124–142. https://doi.org/10.1016/j.precamres.2011.07.020 CrossRefGoogle Scholar
  47. Hacker, B. R., Gnos, L., Grove, M., et al., 2000. Hot and Dry Xenoliths from the Lower Crust of Tibet. Science, 287: 2463–2466CrossRefGoogle Scholar
  48. Haissen, F., Garcia-Casco, A., Torres-Roldan, R., et al., 2004. Decompression Reactions and P-T Conditions in High-Pressure Granulites from Casares-Los Reales Units of the Betic-Rif Belt (S Spain and N Morocco). Journal of African Earth Sciences, 39(3/4/5): 375–383. https://doi.org/10.1016/j.jafrearsci.2004.07.030 CrossRefGoogle Scholar
  49. Harley, S. L., 1987. A Pyroxene-Bearing Meta-Ironstone and Other Pyroxene-Granulites from Tonagh Island, Enderby Land, Antarctica: Further Evidence for very High Temperature (>980 °C) Archaean Regional Metamorphism in the Napier Complex. Journal of Metamorphic Geology, 5(3): 341–356. https://doi.org/10.1111/j.1525-1314.1987.tb00389.x CrossRefGoogle Scholar
  50. Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215–247. https://doi.org/10.1017/s0016756800022330 CrossRefGoogle Scholar
  51. Harley, S. L., 1998a. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 138(1): 81–107. https://doi.org/10.1144/gsl.sp.1996.138.01.06 CrossRefGoogle Scholar
  52. Harley, S. L., 1998b. An Appraisal of Peak Temperatures and Thermal Histories in Ultrahigh-Temperature (UHT) Crustal Metamorphism: The Significance of Aluminous Orthopyroxene. In: Motoyoshi, Y., Shiraishi, K., eds., Origin and Evolution of Continents. Memoir National Institute Polar Research, Tokyo. 53: 49–73Google Scholar
  53. Harley, S. L., 1998c. Ultrahigh Temperature Granulite Metamorphism (1 050 ºC, 12 kbar) and Decompression in Garnet (Mg70)-Orthopyroxene-Sillimanite Gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 16(4): 541–562. https://doi.org/10.1111/j.1525-1314.1998.00155.x CrossRefGoogle Scholar
  54. Harley, S. L., 2004. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 99(4): 140–158. https://doi.org/10.2465/jmps.99.140 CrossRefGoogle Scholar
  55. Harley, S. L., 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125–154. https://doi.org/10.1111/j.1525-1314.2008.00765.x CrossRefGoogle Scholar
  56. Harley, S. L., 2016. A Matter of Time: The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50–72. https://doi.org/10.2465/jmps.160128 CrossRefGoogle Scholar
  57. Harley, S. L., Hensen, B. J., Sheraton, J. W., 1990. Two-Stage Decompression in Orthopyroxene-Sillimanite Granulites from Forefinger Point, Enderby Land, Antarctica: Implications for the Evolution of the Archaean Napier Complex. Journal of Metamorphic Geology, 8(6): 591–613. https://doi.org/10.1111/j.1525-1314.1990.tb00490.x CrossRefGoogle Scholar
  58. Hensen, B. J., Harley, S. L., 1990. Graphical Analysis of p-T-x Relations in Granulite Facies Metapelites. In: Ashworth, J. R., Brown, M., eds., High Temperature Metamorphism and Crustal Anatexis. Unwin Hyman, London. 19–56Google Scholar
  59. Hokada, T., 2001. Feldspar Thermometry in Ultrahigh-Temperature Metamorphic Rocks: Evidence of Crustal Metamorphism Attaining ~1 100 °C in the Archean Napier Complex, East Antarctica. American Mineralogist, 86(7/8): 932–938. https://doi.org/10.2138/am-2001-0718 CrossRefGoogle Scholar
  60. Hokada, T., Suzuki, S., 2006. Feldspar in Felsic Orthogneiss as Indicator for UHT Crustal Processes. Journal of Mineralogical and Petrological Sciences, 101(5): 260–264. https://doi.org/10.2465/jmps.101.260 CrossRefGoogle Scholar
  61. Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  62. Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  63. Hyndman, R. D., Currie, C. A., Mazzotti, S. P., 2005. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 15(2): 4–10. https://doi.org/10.1130/1052-5173(2005)15<4:szbmba>2.0.co;2CrossRefGoogle Scholar
  64. Ishii, S., Tsunogae, T., Santosh, M., 2006. Ultrahigh-Temperature Metamorphism in the Achankovil Zone: Implications for the Correlation of Crustal Blocks in Southern India. Gondwana Research, 10(1/2): 99–114. https://doi.org/10.1016/j.gr.2005.11.019 CrossRefGoogle Scholar
  65. Jagoutz, O., Müntener, O., Ulmer, P., et al., 2007. Petrology and Mineral Chemistry of Lower Crustal Intrusions: The Chilas Complex, Kohistan (NW Pakistan). Journal of Petrology, 48(10): 1895–1953. https://doi.org/10.1093/petrology/egm044 CrossRefGoogle Scholar
  66. Jamieson, R. A., Beaumont, C., 2013. On the Origin of Orogens. Geological Society of America Bulletin, 125(11/12): 1671–1702. https://doi.org/10.1130/b30855.1 CrossRefGoogle Scholar
  67. Jiao, S. J., Guo, J. H., Mao, Q., et al., 2010. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379–393. https://doi.org/10.1007/s00410-010-0602-3 CrossRefGoogle Scholar
  68. Jiao, S. J., Guo, J. H., Mao, Q., et al., 2011. Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379–393. https://doi.org/10.1007/s00410-010-0602-3 CrossRefGoogle Scholar
  69. Kelly, N. M., Harley, S. L., 2004. Orthopyroxene-Corundum in Mg-Al-Rich Granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 45(7): 1481–1512. https://doi.org/10.1093/petrology/egh023 CrossRefGoogle Scholar
  70. Kelsey, D. E., 2008. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 13(1): 1–29. https://doi.org/10.1016/j.gr.2007.06.001 CrossRefGoogle Scholar
  71. Kelsey, D. E., Clark, C., Hand, M., et al., 2006. Comment on “First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism”. Earth and Planetary Science Letters, 249(3/4): 529–534. https://doi.org/10.1016/j.epsl.2006.07.048 CrossRefGoogle Scholar
  72. Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311–356. https://doi.org/10.1016/j.gsf.2014.09.006 CrossRefGoogle Scholar
  73. Kelsey, D. E., White, R. W., Powell, R., 2003a. Orthopyroxene-Sillimanite-Quartz Assemblages: Distribution, Petrology, Quantitative P-T-X Constraints and P-T Paths. Journal of Metamorphic Geology, 21(5): 439–453. https://doi.org/10.1046/j.1525-1314.2003.00456.x CrossRefGoogle Scholar
  74. Kelsey, D. E., White, R. W., Powell, R., et al., 2003b. New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 21(8): 739–759. https://doi.org/10.1046/j.1525-1314.2003.00476.x CrossRefGoogle Scholar
  75. Kemp, A. I. S., Shimura, T., Hawkesworth, C. J., et al., 2007. Linking Granulites, Silicic Magmatism, and Crustal Growth in Arcs: Ion Microprobe (Zircon) U-Pb Ages from the Hidaka Metamorphic Belt, Japan. Geology, 35(9): 807–810. https://doi.org/10.1130/g23586a.1 CrossRefGoogle Scholar
  76. Kihle, J., Bucher-Nurminen, K., 1992. Orthopyroxene-Sillimanite-Sapphirine Granulites from the Bamble Granulite Terrane, Southern Norway. Journal of Metamorphic Geology, 10(5): 671–693. https://doi.org/10.1111/j.1525-1314.1992.tb00114.x CrossRefGoogle Scholar
  77. Kincaid, C., Silver, P., 1996. The Role of Viscous Dissipation in the Orogenic Process. Earth and Planetary Science Letters, 142(3/4): 271–288. https://doi.org/10.1016/0012-821x(96)00116-1 CrossRefGoogle Scholar
  78. Kooijman, E., Smit, M. A., Mezger, K., et al., 2012. Trace Element Systematics in Granulite Facies Rutile: Implications for Zr Geothermometry and Provenance Studies. Journal of Metamorphic Geology, 30(4): 397–412. https://doi.org/10.1111/j.1525-1314.2012.00972.x CrossRefGoogle Scholar
  79. Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. https://doi.org/10.1016/s1367-9120(03)00071-3 CrossRefGoogle Scholar
  80. Lebedeva, Y. M., Glebovitskii, V. A., Bushmin, S. A., et al., 2010. The Age of High-Pressure Metasomatism in Shear Zones during Collision-Related Metamorphism in the Lapland Granulite Belt: The Sm-Nd Method of Dating the Paragenesises from Sillimanite-Orthopyroxene Rocks of Por’ya Guba Nappe. Doklady Earth Sciences, 432(1): 602–605. https://doi.org/10.1134/s1028334x10050119 CrossRefGoogle Scholar
  81. Lee, B. C., Oh, C. W., Kim, T. S., et al., 2016. The Metamorphic Evolution from Ultrahigh-Temperature to Amphibolite Facies Metamorphism in the Odaesan Area after the Collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256/257: 109–131. https://doi.org/10.1016/j.lithos.2016.03.019 CrossRefGoogle Scholar
  82. Lei, H. C., Xiang, H., Zhang, Z. M., et al., 2014. Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 30: 2435–2445 (in Chinese with English Abstract)Google Scholar
  83. Li, Z. L., Chen, H. L., Santosh, M., et al., 2004. Discovery of Ultrahigh-T Spinel-Garnet Granulite with Pure CO2 Fluid Inclusions from the Altay Orogenic Belt, NW China. Journal of Zhejiang University—Science A, 5(10): 1180–1182. https://doi.org/10.1631/jzus.2004.1180 CrossRefGoogle Scholar
  84. Li, Z. L., Yang, X. Q., Li, Y. Q., et al., 2014. Late Paleozoic Tectono-Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt: Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 204: 83–96. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  85. Liu, S. J., Li, J. H., 2007. Review of Ultrahigh-Temperature (UHT) Metamorphism Study: A Case from North China Craton. Earth Science Frontiers, 14(3): 131–137 (in Chinese with English Abstract)CrossRefGoogle Scholar
  86. Liu, S. J., Li, J. H., Santosh, M., 2010. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159(2): 225–235. https://doi.org/10.1007/s00410-009-0425-2 CrossRefGoogle Scholar
  87. Liu, S. J., Tsunogae, T., Li, W. S., et al., 2012. Paleoproterozoic Granulites from Helingʼer: Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 148(1): 54–70. https://doi.org/10.1016/j.lithos.2012.05.024 CrossRefGoogle Scholar
  88. Liu, Y. C., Deng, L. P., Gu, X. F., et al., 2015. Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 27(1): 410–423. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  89. Maidment, D. W., Hand, M., Williams, I. S., 2013. High Grade Metamorphism of Sedimentary Rocks during Palaeozoic Rift Basin Formation in Central Australia. Gondwana Research, 24(3/4): 865–885. https://doi.org/10.1016/j.gr.2012.12.020 CrossRefGoogle Scholar
  90. McFarlane, C. R. M., Carlson, W. D., Connelly, J. N., 2003. Prograde, Peak, and Retrograde P-T Paths from Aluminium in Orthopyroxene: High-Temperature Contact Metamorphism in the Aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. Journal of Metamorphic Geology, 21(5): 405–423. https://doi.org/10.1046/j.1525-1314.2003.00446.x CrossRefGoogle Scholar
  91. McKenzie, D., Priestley, K., 2008. The Influence of Lithospheric Thickness Variations on Continental Evolution. Lithos, 102(1/2): 1–11. https://doi.org/10.1016/j.lithos.2007.05.005 CrossRefGoogle Scholar
  92. Meyer, M., John, T., Brandt, S., et al., 2011. Trace Element Composition of Rutile and the Application of Zr-in-Rutile Thermometry to UHT Metamorphism (Epupa Complex, NW Namibia). Lithos, 126(3/4): 388–401. https://doi.org/10.1016/j.lithos.2011.07.013 CrossRefGoogle Scholar
  93. Mitchell, R. J., Harley, S. L., 2017. Zr-in-Rutile Resetting in Aluminosilicate Bearing Ultra-High Temperature Granulites: Refining the Record of Cooling and Hydration in the Napier Complex, Antarctica. Lithos, 272/273: 128–146. https://doi.org/10.1016/j.lithos.2016.11.027 CrossRefGoogle Scholar
  94. Nabelek, P. I., Liu, M., 2004. Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95(1/2): 73–85. https://doi.org/10.1017/s0263593300000936 CrossRefGoogle Scholar
  95. Nabelek, P. I., Whittington, A. G., Hofmeister, A. M., 2010. Strain Heating as a Mechanism for Partial Melting and Ultrahigh Temperature Metamorphism in Convergent Orogens: Implications of Temperature-Dependent Thermal Diffusivity and Rheology. Journal of Geophysical Research, 115(B12). https://doi.org/10.1029/2010jb007727
  96. Nakano, N., Osanai, Y., Owada, M., et al., 2004. Decompression Process of Mafic Granulite from Eclogite to Granulite Facies under Ultrahigh-Temperature Condition in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 99(4): 242–256. https://doi.org/10.2465/jmps.99.242 CrossRefGoogle Scholar
  97. Nicoli, G., Stevens, G., Buick, I., et al., 2014. A Comment on Ultrahigh-Temperature Metamorphism from an Unusual Corundum+ Orthopyroxene Intergrowth Bearing Al-Mg Granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al.. Contributions to Mineralogy and Petrology, 167(6): 1022. https://doi.org/10.1007/s00410-014-1022-6 CrossRefGoogle Scholar
  98. O’Brien, P. J., Rötzler, J., 2003. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 21(1): 3–20. https://doi.org/10.1046/j.1525-1314.2003.00420.x CrossRefGoogle Scholar
  99. Pape, J., Mezger, K., Robyr, M., 2016. A Systematic Evaluation of the Zr-in-Rutile Thermometer in Ultra-High Temperature (UHT) Rocks. Contributions to Mineralogy and Petrology, 171(5): 44. https://doi.org/10.1007/s00410-016-1254-8 CrossRefGoogle Scholar
  100. Pattison, D. R. M., Chacko, T., Farquhar, J., et al., 2003. Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 44(5): 867–900. https://doi.org/10.1093/petrology/44.5.867 CrossRefGoogle Scholar
  101. Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3): 635–659. https://doi.org/10.1016/j.precamres.2010.08.015 CrossRefGoogle Scholar
  102. Peng, S. B., Jin, Z. M., Fu, J., M., 2006. Ultra-High Temperature Granulite Enclaves in the Darongshan-Shiwandashan Granites in South China and Implications. National Symposium on Petrology and Geodynamics, Nanjing (in Chinese)Google Scholar
  103. Perchuk, L., Gerya, T., Nozhkin, A., 1989. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 7(6): 599–617. https://doi.org/10.1111/j.1525-1314.1989.tb00621.x CrossRefGoogle Scholar
  104. Prakash, D., Arima, M., Mohan, A., 2006. Ultrahigh-Temperature Metamorphism in the Palni Hills, South India: Insights from Feldspar Thermometry and Phase Equilibria. International Geology Review, 48(7): 619–638. https://doi.org/10.2747/0020-6814.48.7.619 CrossRefGoogle Scholar
  105. Royden, L. H., 1993. The Steady State Thermal Structure of Eroding Orogenic Belts and Accretionary Prisms. Journal of Geophysical Research: Solid Earth, 98(B3): 4487–4507. https://doi.org/10.1029/92jb01954 Google Scholar
  106. Rötzler, J., Romer, R. L., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. Journal of Petrology, 42(11): 1995–2013. https://doi.org/10.1093/petrology/42.11.1995 Google Scholar
  107. Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 CrossRefGoogle Scholar
  108. Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Berlin. 373–400Google Scholar
  109. Rubatto, D., Hermann, J., 2007. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 241(1/2): 38–61. https://doi.org/10.1016/j.chemgeo.2007.01.027 CrossRefGoogle Scholar
  110. Rubatto, D., Williams, I. S., Buick, I. S., 2001. Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology, 140(4): 458–468. https://doi.org/10.1007/pl00007673 CrossRefGoogle Scholar
  111. Sajeev, K., Osanai, Y., 2004. Ultrahigh-Temperature Metamorphism (1 150 ºC, 12 kbar) and Multistage Evolution of Mg-, Al-Rich Granulites from the Central Highland Complex, Sri Lanka. Journal of Petrology, 45(9): 1821–1844. https://doi.org/10.1093/petrology/egh035 CrossRefGoogle Scholar
  112. Sajeev, K., Osanai, Y., Santosh, M., 2004. Ultrahigh-Temperature Metamorphism Followed by Two-Stage Decompression of Garnet-Orthopyroxene-Sillimanite Granulites from Ganguvarpatti, Madurai Block, Southern India. Contributions to Mineralogy and Petrology, 148(1): 29–46. https://doi.org/10.1007/s00410-004-0592-0 CrossRefGoogle Scholar
  113. Sandiford, M., McLaren, S., 2006. Thermo-Mechanical Controls on Heat Production Distributions and the Long-Term Evolution of the Continents. In: Brown, M., Rushmer, T., eds., Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge. 67–91Google Scholar
  114. Sandiford, M., Powell, R., 1986. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1 000 ºC Metamorphic Temperatures in Archean Continental Crust. American Mineralogist, 71(7/8): 946–954Google Scholar
  115. Santosh, M., Kusky, T. M., 2010. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 22(1): 35–42. https://doi.org/10.1111/j.1365-3121.2009.00914.x CrossRefGoogle Scholar
  116. Santosh, M., Liu, S. J., Tsunogae, T., et al., 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222/223: 77–106. https://doi.org/10.1016/j.precamres.2011.05.003 CrossRefGoogle Scholar
  117. Santosh, M., Omori, S., 2008a. CO2 Flushing: A Plate Tectonic Perspective. Gondwana Research, 13(1): 86–102. https://doi.org/10.1016/j.gr.2007.07.003 CrossRefGoogle Scholar
  118. Santosh, M., Omori, S., 2008b. CO2 Windows from Mantle to Atmosphere: Models on Ultrahigh-Temperature Metamorphism and Speculations on the Link with Melting of Snowball Earth. Gondwana Research, 14(1/2): 82–96. https://doi.org/10.1016/j.gr.2007.11.001 CrossRefGoogle Scholar
  119. Santosh, M., Sajeev, K., 2006. Anticlockwise Evolution of Ultrahigh-Temperature Granulites within Continental Collision Zone in Southern India. Lithos, 92(3/4): 447–464. https://doi.org/10.1016/j.lithos.2006.03.063 CrossRefGoogle Scholar
  120. Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 10(3/4): 256–266. https://doi.org/10.1016/j.gr.2006.06.005 CrossRefGoogle Scholar
  121. Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263–285. https://doi.org/10.1016/j.gr.2006.10.009 CrossRefGoogle Scholar
  122. Santosh, M., Wilde, S., Li, J. H., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178–196. https://doi.org/10.1016/j.precamres.2007.06.006 CrossRefGoogle Scholar
  123. Scrimgeour, I. R., Kinny, P. D., Close, D. F., et al., 2005. High-T Granulites and Polymetamorphism in the Southern Arunta Region, Central Australia: Evidence for a 1.64Ga Accretional Event. Precambrian Research, 142(1/2): 1–27. https://doi.org/10.1016/j.precamres.2005.08.005 CrossRefGoogle Scholar
  124. Sengupta, P., Raith, M. M., 2002. Garnet Composition as a Petrogenetic Indicator: An Example from a Marble—Calc-Silicate Granulite Interface at Kondapalle, Eastern Ghats Belt, India. American Journal of Science, 302(8): 686–725. https://doi.org/10.2475/ajs.302.8.686 CrossRefGoogle Scholar
  125. Shimpo, M., Tsunogae, T., Santosh, M., 2006. First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism. Earth and Planetary Science Letters, 242(1/2): 111–129. https://doi.org/10.1016/j.epsl.2005.11.042 CrossRefGoogle Scholar
  126. Sisson, V. B., Poole, A. R., Harris, N. R., et al., 2003. Geochemical and Geochronologic Constraints for Genesis of a Tonalite-Trondhjemite Suite and Associated Mafic Intrusive Rocks in the Eastern Chugach Mountains, Alaska: A Record of Ridge Transform Subduction. In: Sisson, V. B., Roeske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 293–326Google Scholar
  127. Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522–545. https://doi.org/10.1016/j.gr.2012.12.011 CrossRefGoogle Scholar
  128. Stüwe, K., 1998. Heat Sources of Cretaceous Metamorphism in the Eastern Alps—A Discussion. Tectonophysics, 287(1/2/3/4): 251–269. https://doi.org/10.1016/s0040-1951(98)80072-3 CrossRefGoogle Scholar
  129. Stüwe, K., 2007. Geodynamics of the Lithosphere: Quantitative Description of Geological Problems, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, Dordrecht. 493Google Scholar
  130. Taylor-Jones, K., Powell, R., 2015. Interpreting Zirconium-in-Rutile Thermometric Results. Journal of Metamorphic Geology, 33(2): 115–122. https://doi.org/10.13039/501100005370 CrossRefGoogle Scholar
  131. Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings. Journal of Geophysical Research: Solid Earth, 100(B8): 15565–15579. https://doi.org/10.1029/95jb00191 CrossRefGoogle Scholar
  132. Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703–713. https://doi.org/10.1111/j.1525-1314.2007.00724.x CrossRefGoogle Scholar
  133. Tong, L. X., Chen, Y. B., Xu, Y. G., et al., 2013. Zircon U-Pb Ages of the Ultrahigh-Temperature Metapelitic Granulite from the Altai Orogen, NW China, and Geological Implications. Acta Petrologica Sinica, 29(10): 3435–3445 (in Chinese with English Abstract)Google Scholar
  134. Tong, L. X., Xu, Y. G., Cawood, P. A., et al., 2014. Anticlockwise P-T Evolution at ~280 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume?. Journal of Asian Earth Sciences, 94: 1–11. https://doi.org/10.1016/j.jseaes.2014.07.043 CrossRefGoogle Scholar
  135. Tsunogae, T., Santosh, M., 2006. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite: Implications for Metamorphic History and P-T Path. Lithos, 92(3/4): 524–536. https://doi.org/10.1016/j.lithos.2006.03.060 CrossRefGoogle Scholar
  136. Tsunogae, T., Santosh, M., 2011. Sapphirine+Quartz Assemblage from the Southern Granulite Terrane, India: Diagnostic Evidence for Ultrahigh-Temperature Metamorphism within the Gondwana Collisional Orogen. Geological Journal, 46(2/3): 183–197. https://doi.org/10.1002/gj.1244 CrossRefGoogle Scholar
  137. Tsunogae, T., Santosh, M., Ohyama, H., et al., 2008. High-Pressure and Ultrahigh-Temperature Metamorphism at Komateri, Northern Madurai Block, Southern India. Journal of Asian Earth Sciences, 33(5/6): 395–413. https://doi.org/10.1016/j.jseaes.2008.02.004 CrossRefGoogle Scholar
  138. Vilà, M., Fernández, M., Jiménez-Munt, I., 2010. Radiogenic Heat Production Variability of Some Common Lithological Groups and Its Significance to Lithospheric Thermal Modeling. Tectonophysics, 490(3/4): 152–164. https://doi.org/10.1016/j.tecto.2010.05.003 CrossRefGoogle Scholar
  139. Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224: 71–93. https://doi.org/10.1016/j.precamres.2012.09.014 CrossRefGoogle Scholar
  140. Wang, W., Wei, C. J., Wang, T., et al., 2009. Confirmation of Pelitic Granulite in the Altai Orogen and Its Geological Significance. Chinese Science Bulletin, 54(14): 2543–2548. https://doi.org/10.1007/s11434-009-0041-6 CrossRefGoogle Scholar
  141. Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5 CrossRefGoogle Scholar
  142. Wei, C. J., 2012. Advance of Metamorphic Petrology during the First Decade of the 21st Century. Bulletin of Mineralogy, Petrology and Geochemistry, 31: 415–427 (in Chinese with English Abstract)Google Scholar
  143. Wei, C. J., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (II): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 32(6): 1625–1643 (in Chinese with English Abstract)Google Scholar
  144. Wei, C. J., Guan, X. J., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33: 1381–1404 (in Chinese with English Abstract)Google Scholar
  145. Wei, C. J., Powell, R., Clarke, G. L., 2004. Calculated Phase Equilibria for Low-and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 22(5): 495–508. https://doi.org/10.1111/j.1525-1314.2004.00530.x CrossRefGoogle Scholar
  146. Wei, C. J., Zhou, X. W., 2003. Progress in the Study Of Metamorphic Phase Equilibrium. Earth Science Frontiers, 10: 341–351 (in Chinese with English Abstract)Google Scholar
  147. Wei, C. J., Zhu, W. P., 2016. Granulite Facies Metamorphism and Petrogenesis of Granite (I): Metamorphic Phase Equilibria for HT-UHT Metapelites/Greywackes. Acta Petrologica Sinica, 32(6): 1611–1624 (in Chinese with English Abstract)Google Scholar
  148. White, R. W., Powell, R., 2010. Retrograde Melt-Residue Interaction and the Formation of Near-Anhydrous Leucosomes in Migmatites. Journal of Metamorphic Geology, 28(6): 579–597. https://doi.org/10.1111/j.1525-1314.2010.00881.x CrossRefGoogle Scholar
  149. White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139–153. https://doi.org/10.1046/j.0263-4929.2000.00303.x CrossRefGoogle Scholar
  150. White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511–527. https://doi.org/10.1111/j.1525-1314.2007.00711.x CrossRefGoogle Scholar
  151. Whittington, A. G., Hofmeister, A. M., Nabelek, P. I., 2009. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 458(7236): 319–321. https://doi.org/10.1038/nature07818 CrossRefGoogle Scholar
  152. Xiang, H., Zhang, Z. M., Lei, H. C., et al., 2014a. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen: Constraints from Petrology and Geochronology. Precambrian Research, 254: 273–289. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  153. Xiang, H., Zhong, Z. Q., Li, Y., et al., 2014b. Sapphirine-Bearing Granulites from the Tongbai Orogen, China: Petrology, Phase Equilibria, Zircon U-Pb Geochronology and Implications for Paleozoic Ultrahigh Temperature Metamorphism. Lithos, 208/209: 446–461. https://doi.org/10.1016/j.lithos.2014.08.017 CrossRefGoogle Scholar
  154. Yang, C., Wei, C. J., 2017. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton: Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 46: 156–169. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  155. Yang, Q. Y., Santosh, M., Tsunogae, T., 2014. Ultrahigh-Temperature Metamorphism under Isobaric Heating: New Evidence from the North China Craton. Journal of Asian Earth Sciences, 95: 2–16. https://doi.org/10.1016/j.jseaes.2014.01.018 CrossRefGoogle Scholar
  156. Yang, X. Q., Li, Z. L., 2013. Fluid Characteristics of Late Paleozoic Ultrahigh-Temperature Granulites from the Altay Orogenic Belt, Northwestern China and Its Significance. Acta Petrologica Sinica, 29(10): 3446–3456 (in Chinese with English Abstract)Google Scholar
  157. Yoshino, T., Okudaira, T., 2004. Crustal Growth by Magmatic Accretion Constrained by Metamorphic P-T Paths and Thermal Models of the Kohistan Arc, NW Himalayas. Journal of Petrology, 45(11): 2287–2302. https://doi.org/10.1093/petrology/egh056 CrossRefGoogle Scholar
  158. Yu, S. Y., Zhang, J. X., Gong, J. H., 2011. Zr-in-Rutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications. Earth Science Frontiers, 18(2): 140–150 (in Chinese with English Abstract)Google Scholar
  159. Zack, T., Moraes, R., Kronz, A., 2004. Temperature Dependence of Zr in Rutile: Empirical Calibration of a Rutile Thermometer. Contributions to Mineralogy and Petrology, 148(4): 471–488. https://doi.org/10.1007/s00410-004-0617-8 CrossRefGoogle Scholar
  160. Zhai, M. G., Liu, W. J., 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28–38 (in Chinese with English Abstract)Google Scholar
  161. Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2010. Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China. Contributions to Mineralogy and Petrology, 160(3): 427–439. https://doi.org/10.1007/s00410-009-0486-2 CrossRefGoogle Scholar
  162. Zhang, J. X., Meng, F. C., 2005. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 50(3): 265–269. https://doi.org/10.1007/bf02897537 CrossRefGoogle Scholar
  163. Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2000. Petrology and P-T Path of the Fuping Mafic Granulites: Implications for Tectonic Evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 18(4): 375–391. https://doi.org/10.1046/j.1525-1314.2000.00264.x CrossRefGoogle Scholar
  164. Zhao, L., Guo, F., Fan, W. M., et al., 2011. Late Paleozoic Ultrahigh-Temperature Metamorphism in South China: A Case Study of Granulite Enclaves in the Shiwandashan Granites. Acta Petrologica Sinica, 27(6): 1707–1720 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations