Advertisement

Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle

  • Shengxuan Huang
  • Shan Qin
  • Xiang Wu
Article
  • 52 Downloads

Abstract

The pyrite-type FeO2H-FeO2 system has been experimentally confirmed to be stable in Earth’s lowermost mantle but there is limited information about its physical properties at high pressures constraining our understanding of its potential geophysical implications for the deep Earth. Here, static calculations demonstrate that the pyrite-type FeO2H-FeO2 system has a high density and Poisson’s ratio and ultra-low seismic velocities at conditions of Earth’s lowermost mantle. It provides a plausible mechanism for the origin of ultra-low velocity zones at Earth’s D″ layer. The incorporation of hydrogen in the pyrite-type FeO2H-FeO2 system tends to decrease the S wave velocity (VS) but increase the bulk sound velocity (VΦ), and can potentially explain the observed anti-correlation of VS and VΦ in the lowermost mantle. Additionally, FeO2H exhibits nearly isotropic whereas FeO2 is highly anisotropic, which may help understand some seismic anisotropies at the core-mantle boundary.

Key Words

FeO2FeO2 ultra-low velocity zones D″ layer anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Xiang Wu and Shan Qin acknowledge financial support from the National Natural Science Foundation of China (Nos. 41473056 and 41472037). Thanks go to the reviewers and the editors for their helpful suggestions. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0836-y.

References Cited

  1. Andrault, D., Pesce, G., Bouhifd, M. A., et al., 2014. Melting of Subducted Basalt at the Core-Mantle Boundary. Science, 344(6186): 892–895. https://doi.org/10.1126/science.1250466 CrossRefGoogle Scholar
  2. Bindi, L., Nishi, M., Tsuchiya, J., et al., 2014. Crystal Chemistry of Dense Hydrous Magnesium Silicates: The Structure of Phase H, MgSiH2O4, Synthesized at 45 GPa and 1 000 ºC. American Mineralogist, 99(8/9): 1802–1805. https://doi.org/10.2138/am.2014.4994 CrossRefGoogle Scholar
  3. Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11): 809–824. https://doi.org/10.1103/physrev.71.809 CrossRefGoogle Scholar
  4. Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227–286. https://doi.org/10.1029/jz057i002p00227 CrossRefGoogle Scholar
  5. Blöchl, P. E., 1994. Projector Augmented-Wave Method. Physical Review B, 50(24): 17953–17979. https://doi.org/10.1103/physrevb.50.17953 CrossRefGoogle Scholar
  6. Born, M., Huang, K., 1954. Dynamical Theory of Crystal Lattices. Oxford University Press, OxfordGoogle Scholar
  7. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., et al., 1998. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 57(3): 1505–1509. https://doi.org/10.1103/physrevb.57.1505 CrossRefGoogle Scholar
  8. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  9. Garnero, E. J., 2000. Heterogeneity of the Lowermost Mantle. Annual Review of Earth and Planetary Sciences, 28(1): 509–537. https://doi.org/10.1146/annurev.earth.28.1.509 CrossRefGoogle Scholar
  10. Garnero, E. J., Helmberger, D. V., 1996. Seismic Detection of a Thin Laterally Varying Boundary Layer at the Base of the Mantle beneath the Central-Pacific. Geophysical Research Letters, 23(9): 977–980. https://doi.org/10.1029/95gl03603 CrossRefGoogle Scholar
  11. Garnero, E. J., McNamara, A. K., Shim, S. H., 2016. Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earthʼs Mantle. Nature Geoscience, 9(7): 481–489. https://doi.org/10.1038/ngeo2733 CrossRefGoogle Scholar
  12. Gleason, A. E., Quiroga, C. E., Suzuki, A., et al., 2013. Symmetrization Driven Spin Transition in ε-FeOOH at High Pressure. Earth and Planetary Science Letters, 379: 49–55. https://doi.org/10.1016/j.epsl.2013.08.012 CrossRefGoogle Scholar
  13. Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018 CrossRefGoogle Scholar
  14. Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth’s Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498–1501. https://doi.org/10.1073/pnas.1620644114 CrossRefGoogle Scholar
  15. Hill, R., 1952. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society of London Section A, 65(389): 349–355. https://doi.org/10.1088/0370-1298/65/5/307 CrossRefGoogle Scholar
  16. Iitaka, T., Hirose, K., Kawamura, K., et al., 2004. The Elasticity of the MgSiO3 Post-Perovskite Phase in the Earthʼs Lowermost Mantle. Nature, 430(6998): 442–445. https://doi.org/10.1038/nature02702 CrossRefGoogle Scholar
  17. Jang, B. G., Kim, D. Y., Shim, J. H., 2017. Metal-Insulator Transition and the Role of Electron Correlation in FeO2. Physical Review B, 95(7): 075144. https://doi.org/10.1103/physrevb.95.075144 CrossRefGoogle Scholar
  18. Karki, B. B., Stixrude, L., Wentzcovitch, R. M., 2001. High-Pressure Elastic Properties of Major Materials of Earthʼs Mantle from First Principles. Reviews of Geophysics, 39(4): 507–534. https://doi.org/10.1029/2000rg000088 CrossRefGoogle Scholar
  19. Kresse, G., Furthmüller, J., 1996. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54(16): 11169–11186. https://doi.org/10.1103/physrevb.54.11169 CrossRefGoogle Scholar
  20. Kresse, G., Joubert, D., 1999. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59(3): 1758–1775. https://doi.org/10.1103/physrevb.59.1758 CrossRefGoogle Scholar
  21. Lay, T., Williams, Q., Garnero, E. J., 1998. The Core-Mantle Boundary Layer and Deep Earth Dynamics. Nature, 392(6675): 461–468. https://doi.org/10.1038/33083 CrossRefGoogle Scholar
  22. Li, X. Y., Mao, Z., Sun, N., et al., 2016. Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 43(16): 8458–8465. https://doi.org/10.1002/2016gl070027 CrossRefGoogle Scholar
  23. Li, M. M., McNamara, A. K., Garnero, E. J., et al., 2017. Compositionally-Distinct Ultra-Low Velocity Zones on Earth’s Core-Mantle Boundary. Nature Communications, 8(1): 177. https://doi.org/10.1038/s41467-017-00219-x CrossRefGoogle Scholar
  24. Liu, J., Hu, Q. Y., Kim, D. Y., et al., 2017. Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature, 551(7681): 494–497. https://doi.org/10.1038/nature24461 CrossRefGoogle Scholar
  25. Mainprice, D., 1990. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393. https://doi.org/10.1016/0098-3004(90)90072-2 CrossRefGoogle Scholar
  26. Mainprice, D., Barruol, G., Ismail, W. B., 2000. The Seismic Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 237–264Google Scholar
  27. Mao, W. L., Mao, H. K., Sturhahn, W., et al., 2006. Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones. Science, 312(5773): 564–565. https://doi.org/10.1126/science.1123442 CrossRefGoogle Scholar
  28. Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earthʼs Core-Mantle Boundary. National Science Review, 4(6): 870–878. https://doi.org/10.1093/nsr/nwx109 CrossRefGoogle Scholar
  29. Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research:Solid Earth, 121(2): 595–609. https://doi.org/10.1002/2015jb012477 Google Scholar
  30. Masters, G., Laske, G., Bolton, H., et al., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earthʼs Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 63–87Google Scholar
  31. McNamara, A. K., Garnero, E. J., Rost, S., 2010. Tracking Deep Mantle Reservoirs with Ultra-Low Velocity Zones. Earth and Planetary Science Letters, 299(1/2): 1–9. https://doi.org/10.1016/j.epsl.2010.07.042 CrossRefGoogle Scholar
  32. Murnaghan, F. D., 1944. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9): 244–247. https://doi.org/10.1073/pnas.30.9.244 CrossRefGoogle Scholar
  33. Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. https://doi.org/10.1007/s12583-017-0755-3 CrossRefGoogle Scholar
  34. Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074 CrossRefGoogle Scholar
  35. Nishi, M., Kuwayama, Y., Tsuchiya, J., et al., 2017. The Pyrite-Type High-Pressure Form of FeOOH. Nature, 547(7662): 205–208. https://doi.org/10.1038/nature22823 CrossRefGoogle Scholar
  36. Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earthʼs D″ Layer. Nature, 430(6998): 445–448. https://doi.org/10.1038/nature02701 CrossRefGoogle Scholar
  37. Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12–17. https://doi.org/10.1016/j.epsl.2014.05.059 CrossRefGoogle Scholar
  38. Ohtani, E., 2015. Hydrous Minerals and the Storage of Water in the Deep Mantle. Chemical Geology, 418: 6–15. https://doi.org/10.13039/501100003443 CrossRefGoogle Scholar
  39. Ohtani, E., Toma, M., Kubo, T., et al., 2003. In situ X-Ray Observation of Decomposition of Superhydrous Phase B at High Pressure and Temperature. Geophysical Research Letters, 30(2): 1029. https://doi.org/10.1029/2002gl015549 CrossRefGoogle Scholar
  40. Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. https://doi.org/10.1002/2014gl061690 CrossRefGoogle Scholar
  41. Pamato, M. G., Myhill, R., Boffa Ballaran, T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. https://doi.org/10.1038/ngeo2306 CrossRefGoogle Scholar
  42. Panero, W. R., Caracas, R., 2017. Stability of Phase H in the MgSiO4H2-AlOOH-SiO2 System. Earth and Planetary Science Letters, 463: 171–177. https://doi.org/10.1016/j.epsl.2017.01.033 CrossRefGoogle Scholar
  43. Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18): 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  44. Stacey, F. D., Loper, D. E., 1983. The Thermal Boundary-Layer Interpretation of D″ and Its Role as a Plume Source. Physics of the Earth and Planetary Interiors, 33(1): 45–55. https://doi.org/10.1016/0031-9201(83)90006-7 CrossRefGoogle Scholar
  45. Thompson, E. C., Campbell, A. J., Tsuchiya, J., 2017. Elasticity of ε-FeOOH: Seismic Implications for Earthʼs Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5038–5047. https://doi.org/10.1002/2017JB014168 Google Scholar
  46. Trønnes, R. G., 2010. Structure, Mineralogy and Dynamics of the Lowermost Mantle. Mineralogy and Petrology, 99(3/4): 243–261. https://doi.org/10.1007/s00710-009-0068-z CrossRefGoogle Scholar
  47. Tsuchiya, J., 2013. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 40(17): 4570–4573. https://doi.org/10.1002/grl.50875 CrossRefGoogle Scholar
  48. Tsuchiya, J., Mookherjee, M., 2015. Crystal Structure, Equation of State and Elasticity of Phase H (MgSiO4H2) at Earth’s Lower Mantle Pressures. Scientific Reports, 5(1): 15534. https://doi.org/10.1038/srep15534 CrossRefGoogle Scholar
  49. Tsuchiya, J., Tsuchiya, T., 2009. Elastic Properties of δ-AlOOH under Pressure: First Principles Investigation. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 122–127. https://doi.org/10.1016/j.pepi.2009.01.008 CrossRefGoogle Scholar
  50. Walter, M. J., Thomson, A. R., Wang, W., et al., 2015. The Stability of Hydrous Silicates in Earthʼs Lower Mantle: Experimental Constraints from the Systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O. Chemical Geology, 418: 16–29. https://doi.org/10.1016/j.chemgeo.2015.05.001 CrossRefGoogle Scholar
  51. Wicks, J. K., Jackson, J. M., Sturhahn, W., 2010. Very Low Sound Velocities in Iron-Rich (Mg,Fe)O: Implications for the Core-Mantle Boundary Region. Geophysical Research Letters, 37(15): L15304. https://doi.org/10.1029/2010gl043689 Google Scholar
  52. Wicks, J. K., Jackson, J. M., Sturhahn, W., et al., 2017. Sound Velocity and Density of Magnesiowüstites: Implications for Ultralow-Velocity Zone Topography. Geophysical Research Letters, 44(5): 2148–2158. https://doi.org/10.1002/2016gl071225 Google Scholar
  53. Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earthʼs Mantle. Science, 273(5281): 1528–1530. https://doi.org/10.1126/science.273.5281.1528 CrossRefGoogle Scholar
  54. Williams, Q., Revenaugh, J., Garnero, E., 1998. A Correlation between Ultra-Low Basal Velocities in the Mantle and Hot Spots. Science, 281(5376): 546–549. https://doi.org/10.1126/science.281.5376.546 CrossRefGoogle Scholar
  55. Wu, X., Wu, Y., Lin, J. F., 2016. Two-Stage Spin Transition of Iron in FeAl-Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411–6420. https://doi.org/10.1002/2016JB013209 Google Scholar
  56. Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post-Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669 CrossRefGoogle Scholar
  57. Yang, D. P., Wang, W. Z., Wu, Z., 2017. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5026–5037. https://doi.org/10.1002/2017JB014319 Google Scholar
  58. Zhang, X. L., Niu, Z. W., Tang, M., et al., 2017. First-Principles Thermoelasticity and Stability of Pyrite-Type FeO2 under High Pressure and Temperature. Journal of Alloys and Compounds, 719: 42–46. https://doi.org/10.1016/j.jallcom.2017.05.143 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResoursesChina University of GeosciencesWuhanChina

Personalised recommendations