Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle

  • Shengxuan Huang
  • Shan Qin
  • Xiang WuEmail author


The pyrite-type FeO2H-FeO2 system has been experimentally confirmed to be stable in Earth’s lowermost mantle but there is limited information about its physical properties at high pressures constraining our understanding of its potential geophysical implications for the deep Earth. Here, static calculations demonstrate that the pyrite-type FeO2H-FeO2 system has a high density and Poisson’s ratio and ultra-low seismic velocities at conditions of Earth’s lowermost mantle. It provides a plausible mechanism for the origin of ultra-low velocity zones at Earth’s D″ layer. The incorporation of hydrogen in the pyrite-type FeO2H-FeO2 system tends to decrease the S wave velocity (VS) but increase the bulk sound velocity (VΦ), and can potentially explain the observed anti-correlation of VS and VΦ in the lowermost mantle. Additionally, FeO2H exhibits nearly isotropic whereas FeO2 is highly anisotropic, which may help understand some seismic anisotropies at the core-mantle boundary.

Key Words

FeO2FeO2 ultra-low velocity zones D″ layer anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Xiang Wu and Shan Qin acknowledge financial support from the National Natural Science Foundation of China (Nos. 41473056 and 41472037). Thanks go to the reviewers and the editors for their helpful suggestions. The final publication is available at Springer via

References Cited

  1. Andrault, D., Pesce, G., Bouhifd, M. A., et al., 2014. Melting of Subducted Basalt at the Core-Mantle Boundary. Science, 344(6186): 892–895. CrossRefGoogle Scholar
  2. Bindi, L., Nishi, M., Tsuchiya, J., et al., 2014. Crystal Chemistry of Dense Hydrous Magnesium Silicates: The Structure of Phase H, MgSiH2O4, Synthesized at 45 GPa and 1 000 ºC. American Mineralogist, 99(8/9): 1802–1805. CrossRefGoogle Scholar
  3. Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11): 809–824. CrossRefGoogle Scholar
  4. Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227–286. CrossRefGoogle Scholar
  5. Blöchl, P. E., 1994. Projector Augmented-Wave Method. Physical Review B, 50(24): 17953–17979. CrossRefGoogle Scholar
  6. Born, M., Huang, K., 1954. Dynamical Theory of Crystal Lattices. Oxford University Press, OxfordGoogle Scholar
  7. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., et al., 1998. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 57(3): 1505–1509. CrossRefGoogle Scholar
  8. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. CrossRefGoogle Scholar
  9. Garnero, E. J., 2000. Heterogeneity of the Lowermost Mantle. Annual Review of Earth and Planetary Sciences, 28(1): 509–537. CrossRefGoogle Scholar
  10. Garnero, E. J., Helmberger, D. V., 1996. Seismic Detection of a Thin Laterally Varying Boundary Layer at the Base of the Mantle beneath the Central-Pacific. Geophysical Research Letters, 23(9): 977–980. CrossRefGoogle Scholar
  11. Garnero, E. J., McNamara, A. K., Shim, S. H., 2016. Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earthʼs Mantle. Nature Geoscience, 9(7): 481–489. CrossRefGoogle Scholar
  12. Gleason, A. E., Quiroga, C. E., Suzuki, A., et al., 2013. Symmetrization Driven Spin Transition in ε-FeOOH at High Pressure. Earth and Planetary Science Letters, 379: 49–55. CrossRefGoogle Scholar
  13. Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. CrossRefGoogle Scholar
  14. Hu, Q. Y., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth’s Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498–1501. CrossRefGoogle Scholar
  15. Hill, R., 1952. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society of London Section A, 65(389): 349–355. CrossRefGoogle Scholar
  16. Iitaka, T., Hirose, K., Kawamura, K., et al., 2004. The Elasticity of the MgSiO3 Post-Perovskite Phase in the Earthʼs Lowermost Mantle. Nature, 430(6998): 442–445. CrossRefGoogle Scholar
  17. Jang, B. G., Kim, D. Y., Shim, J. H., 2017. Metal-Insulator Transition and the Role of Electron Correlation in FeO2. Physical Review B, 95(7): 075144. CrossRefGoogle Scholar
  18. Karki, B. B., Stixrude, L., Wentzcovitch, R. M., 2001. High-Pressure Elastic Properties of Major Materials of Earthʼs Mantle from First Principles. Reviews of Geophysics, 39(4): 507–534. CrossRefGoogle Scholar
  19. Kresse, G., Furthmüller, J., 1996. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54(16): 11169–11186. CrossRefGoogle Scholar
  20. Kresse, G., Joubert, D., 1999. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59(3): 1758–1775. CrossRefGoogle Scholar
  21. Lay, T., Williams, Q., Garnero, E. J., 1998. The Core-Mantle Boundary Layer and Deep Earth Dynamics. Nature, 392(6675): 461–468. CrossRefGoogle Scholar
  22. Li, X. Y., Mao, Z., Sun, N., et al., 2016. Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 43(16): 8458–8465. CrossRefGoogle Scholar
  23. Li, M. M., McNamara, A. K., Garnero, E. J., et al., 2017. Compositionally-Distinct Ultra-Low Velocity Zones on Earth’s Core-Mantle Boundary. Nature Communications, 8(1): 177. CrossRefGoogle Scholar
  24. Liu, J., Hu, Q. Y., Kim, D. Y., et al., 2017. Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature, 551(7681): 494–497. CrossRefGoogle Scholar
  25. Mainprice, D., 1990. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 16(3): 385–393. CrossRefGoogle Scholar
  26. Mainprice, D., Barruol, G., Ismail, W. B., 2000. The Seismic Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 237–264Google Scholar
  27. Mao, W. L., Mao, H. K., Sturhahn, W., et al., 2006. Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones. Science, 312(5773): 564–565. CrossRefGoogle Scholar
  28. Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earthʼs Core-Mantle Boundary. National Science Review, 4(6): 870–878. CrossRefGoogle Scholar
  29. Mashino, I., Murakami, M., Ohtani, E., et al., 2016. Sound Velocities of δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research:Solid Earth, 121(2): 595–609. Google Scholar
  30. Masters, G., Laske, G., Bolton, H., et al., 2000. The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In: Karato, S. I., Forte, A., Liebermann, R., et al., eds., Earthʼs Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. American Geophysical Union, Washington DC. 63–87Google Scholar
  31. McNamara, A. K., Garnero, E. J., Rost, S., 2010. Tracking Deep Mantle Reservoirs with Ultra-Low Velocity Zones. Earth and Planetary Science Letters, 299(1/2): 1–9. CrossRefGoogle Scholar
  32. Murnaghan, F. D., 1944. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 30(9): 244–247. CrossRefGoogle Scholar
  33. Nakagawa, T., 2017. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 28(4): 563–577. CrossRefGoogle Scholar
  34. Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. CrossRefGoogle Scholar
  35. Nishi, M., Kuwayama, Y., Tsuchiya, J., et al., 2017. The Pyrite-Type High-Pressure Form of FeOOH. Nature, 547(7662): 205–208. CrossRefGoogle Scholar
  36. Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earthʼs D″ Layer. Nature, 430(6998): 445–448. CrossRefGoogle Scholar
  37. Ohira, I., Ohtani, E., Sakai, T., et al., 2014. Stability of a Hydrous δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 401: 12–17. CrossRefGoogle Scholar
  38. Ohtani, E., 2015. Hydrous Minerals and the Storage of Water in the Deep Mantle. Chemical Geology, 418: 6–15. CrossRefGoogle Scholar
  39. Ohtani, E., Toma, M., Kubo, T., et al., 2003. In situ X-Ray Observation of Decomposition of Superhydrous Phase B at High Pressure and Temperature. Geophysical Research Letters, 30(2): 1029. CrossRefGoogle Scholar
  40. Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. CrossRefGoogle Scholar
  41. Pamato, M. G., Myhill, R., Boffa Ballaran, T., et al., 2015. Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75–79. CrossRefGoogle Scholar
  42. Panero, W. R., Caracas, R., 2017. Stability of Phase H in the MgSiO4H2-AlOOH-SiO2 System. Earth and Planetary Science Letters, 463: 171–177. CrossRefGoogle Scholar
  43. Perdew, J. P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18): 3865–3868. CrossRefGoogle Scholar
  44. Stacey, F. D., Loper, D. E., 1983. The Thermal Boundary-Layer Interpretation of D″ and Its Role as a Plume Source. Physics of the Earth and Planetary Interiors, 33(1): 45–55. CrossRefGoogle Scholar
  45. Thompson, E. C., Campbell, A. J., Tsuchiya, J., 2017. Elasticity of ε-FeOOH: Seismic Implications for Earthʼs Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5038–5047. Google Scholar
  46. Trønnes, R. G., 2010. Structure, Mineralogy and Dynamics of the Lowermost Mantle. Mineralogy and Petrology, 99(3/4): 243–261. CrossRefGoogle Scholar
  47. Tsuchiya, J., 2013. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 40(17): 4570–4573. CrossRefGoogle Scholar
  48. Tsuchiya, J., Mookherjee, M., 2015. Crystal Structure, Equation of State and Elasticity of Phase H (MgSiO4H2) at Earth’s Lower Mantle Pressures. Scientific Reports, 5(1): 15534. CrossRefGoogle Scholar
  49. Tsuchiya, J., Tsuchiya, T., 2009. Elastic Properties of δ-AlOOH under Pressure: First Principles Investigation. Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 122–127. CrossRefGoogle Scholar
  50. Walter, M. J., Thomson, A. R., Wang, W., et al., 2015. The Stability of Hydrous Silicates in Earthʼs Lower Mantle: Experimental Constraints from the Systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O. Chemical Geology, 418: 16–29. CrossRefGoogle Scholar
  51. Wicks, J. K., Jackson, J. M., Sturhahn, W., 2010. Very Low Sound Velocities in Iron-Rich (Mg,Fe)O: Implications for the Core-Mantle Boundary Region. Geophysical Research Letters, 37(15): L15304. Google Scholar
  52. Wicks, J. K., Jackson, J. M., Sturhahn, W., et al., 2017. Sound Velocity and Density of Magnesiowüstites: Implications for Ultralow-Velocity Zone Topography. Geophysical Research Letters, 44(5): 2148–2158. Google Scholar
  53. Williams, Q., Garnero, E. J., 1996. Seismic Evidence for Partial Melt at the Base of Earthʼs Mantle. Science, 273(5281): 1528–1530. CrossRefGoogle Scholar
  54. Williams, Q., Revenaugh, J., Garnero, E., 1998. A Correlation between Ultra-Low Basal Velocities in the Mantle and Hot Spots. Science, 281(5376): 546–549. CrossRefGoogle Scholar
  55. Wu, X., Wu, Y., Lin, J. F., 2016. Two-Stage Spin Transition of Iron in FeAl-Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411–6420. Google Scholar
  56. Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post-Perovskite. Nature Communications, 8: 14669. CrossRefGoogle Scholar
  57. Yang, D. P., Wang, W. Z., Wu, Z., 2017. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5026–5037. Google Scholar
  58. Zhang, X. L., Niu, Z. W., Tang, M., et al., 2017. First-Principles Thermoelasticity and Stability of Pyrite-Type FeO2 under High Pressure and Temperature. Journal of Alloys and Compounds, 719: 42–46. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Geological Processes and Mineral ResoursesChina University of GeosciencesWuhanChina

Personalised recommendations