Advertisement

An Upper Crustal Ophiolite Remnant within the Feather River Ultramafic Belt, California: Tectonomagmatic Origins and Implications for Its Evolution

  • Jun LuoEmail author
  • John Wakabayashi
  • Zhiliang He
  • Jinbiao Yun
  • Quanyou Liu
  • Tianyi Li
  • Haiming Song
  • Wenjiao Xiao
Article
  • 18 Downloads

Abstract

The 150-km-long Feather River ultramafic belt (FRB) of the northern Sierra Nevada, California, consists of serpentinized ultramafic rocks, gabbroic rocks, with lesser amounts of amphibolitic rocks. The gabbroic rocks contain metagabbro and dikes within it. Based on the electron microprobe analyses, the metagabbro consists of typical igneous composition for clinopyroxene and early hornblende, indicating that they bear low grade metamorphism. The gabbroic rocks show Nb and Ta depletion in primitive-mantle normalized plots that is similar to typical island arc rocks. We present that the metagabbro within the ultramafic rocks is forming in the suprasubduction zone setting. Tectonic models are presented for the metagabbro and amphibolitic rocks in FRB. The low P burial metamorphism of the upper plate metagabbro and the high grade amphibolitic rocks are typical of relationships of upper plate ophiolites to metamorphic soles. The amphibolitic rocks record as metamorphic sole forming during subduction initiation beneath the ultramafic rocks and metagabbro. The unusual and protracted tectonic history of the FRB is similar to other ophiolite belts of the Cordillera of California but differs in the lack of crustal rocks.

Key words

high-grade rocks metamorphic sole ophiolite suture zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We appreciate Brian Windley who has taught us to analyze ophiolitic complexes in the field. We are grateful to two anonymous reviewers for their constructive comments and suggestions. This study was financially supported by the National Natural Science Foundation of China (Nos. 40739904, 41072093, and 41302117) and SINOPEC. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0964-9.

Supplementary material

12583_2017_964_MOESM1_ESM.xlsx (14 kb)
Supplementary material, approximately 15 KB.

References Cited

  1. Bateman, P. C., Harris, A. G., Kistler, R. W., et al., 1985. Calaveras Reversed: Westward Younging is Indicated. Geology, 13(5): 338–341.  https://doi.org/10.1130/0091-7613(1985)13<338:crwyii>2.0.co;2 CrossRefGoogle Scholar
  2. Coleman, R. G., 1971. Plate Tectonic Emplacement of Upper Mantle Peridotites along Continental Edges. Journal of Geophysical Research, 76(5): 1212–1222. https://doi.org/10.1029/jb076i005p01212 CrossRefGoogle Scholar
  3. Day, H. W., Moores, E. M., Tuminas, A. C., 1985. Structure and Tectonics of the Northern Sierra Nevada. Geological Society of America Bulletin, 96(4): 436–450CrossRefGoogle Scholar
  4. Dewey, J. F., 1976. Ophiolite Obduction. Tectonophysics, 31(1/2): 93–120CrossRefGoogle Scholar
  5. Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625–2647. https://doi.org/10.1029/jb075i014p02625 CrossRefGoogle Scholar
  6. Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387–411. https://doi.org/10.1130/b30446.1 CrossRefGoogle Scholar
  7. Dilek, Y., Whitney, D. L., 1997. Counterclockwise P-T-t Trajectory from the Metamorphic Sole of a Neo-Tethyan Ophiolite (Turkey). Tectonophysics, 280(3/4): 295–310. https://doi.org/10.1016/s0040-1951(97)00038-3 CrossRefGoogle Scholar
  8. Eck, D. S., 2013. The Devil’s Gate Ophiolite, Northern Sierra Nevada, California: Not an Ophiolite or Metamorphic Sole? Geological Society of America Abstracts with Programs, 45(6): 72Google Scholar
  9. Edelman, S. H., Day, H. W., Moores, E. M., et al., 1989. Structure across a Mesozoic Ocean-Continent Suture Zone in the Northern Sierra Nevada, California. Geological Society of America Special Paper, 224: 55.Google Scholar
  10. Ehrenberg, S. N., 1975. Feather River Ultramafic Body, Northern Sierra Nevada, California. Geological Society of America Bulletin, 86(9): 1235–1243.  https://doi.org/10.1130/0016-7606(1975)86<1235:frubns>2.0.co;2 CrossRefGoogle Scholar
  11. Gehrels, G. E., Dickinson, W. R., Darby, B. J., et al., 2000. Tectonic Implications of Detrital Zircon Data from Paleozoic and Triassic Strata in Western Nevada and Northern California: In: Soreghan, M. J., Gehrels, G. E., eds., Paleozoic and Triassic Paleogeography and Tectonic Evolution of Western Nevada and Northern California: Boulder, CO. Geological Society of America Special Paper, 347: 133–150Google Scholar
  12. Gillis, K. M., 1995. Controls on Hydrothermal Alteration in a Section of Fast-Spreading Oceanic Crust. Earth and Planetary Science Letters, 134(3/4): 473–489. https://doi.org/10.1016/0012-821x(95)00137-2 CrossRefGoogle Scholar
  13. Guilmette, C., Hébert, R., Dupuis, C., et al., 2008. Metamorphic History and Geodynamic Significance of High-Grade Metabasites from the Ophiolitic Mélange beneath the Yarlung Zangbo Ophiolites, Xigaze Area, Tibet. Journal of Asian Earth Sciences, 32(5/6): 423–437. https://doi.org/10.1016/j.jseaes.2007.11.013 CrossRefGoogle Scholar
  14. Hacker, B. R., 1990. Simulation of the Metamorphic and Deformational History of the Metamorphic Sole of the Oman Ophiolite. Journal of Geophysical Research, 95(B4): 4895–4907CrossRefGoogle Scholar
  15. Hacker, B. R., 1993. Evolution of the Northern Sierra-Nevada Metamorphic Belt-Petrological, Structural, and Ar/Ar Constraints. Geological Society of America Bulletin, 105(5): 637–656CrossRefGoogle Scholar
  16. Hannah, J. L., Moores, E. M., 1986. Age Relationships and Depositional Environments of Paleozoic Strata, Northern Sierra Nevada, California. Geological Society of America Bulletin, 97(7): 787–797.  https://doi.org/10.1130/0016-7606(1986)97<787:aradeo>2.0.co;2 CrossRefGoogle Scholar
  17. Harding, J. P., Gehrels, G. E., Harwood, D. S., et al., 2000. Detrital Zircon Geochronology of the Shoo Fly Complex, Northern Sierra Terrane, Northeastern California. In: Soreghan, M. J., Gehrels, G. E., eds., Paleozoic and Triassic Paleogeography and Tectonic Evolution of Western Nevada and Northern California: Boulder, CO. Geological Society of America Special Paper, 347: 43–55Google Scholar
  18. Hietanen, A., 1981. Geology West of the Melones Fault between the Feather and North Yuba Rivers, California. U.S. New Publications of the Geological Survey, 1126: 35Google Scholar
  19. Jackson, J. L., Wakabayashi, J., Jackson, B. A., 2011. Southern Continuation of High-Grade Metamorphic Rocks of the Feather River Ultramafic Belt, California: Preliminary Reconnaissance. EOS Fall Meeting, San FranciscoGoogle Scholar
  20. Jamieson, R., 1986. P-T Paths from High Temperature Shear Zones beneath Ophiolites. Journal of Metamorphic Geology, 4(1): 3–22CrossRefGoogle Scholar
  21. Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/S0039-9140(99)00318-5 CrossRefGoogle Scholar
  22. Luo, J., Xiao, W. J., Wakabayashi, J., et al., 2017. The Zhaheba Ophiolite Complex in Eastern Junggar (NW China): Long Lived Supra-Subduction Zone Ocean Crust Formation and Its Implications for the Tectonic Evolution in Southern Altaids. Gondwana Research, 43: 17–40. https://doi.org/10.13039/501100001809 CrossRefGoogle Scholar
  23. Masutsubo, N., Wakabayashi, J., 2013. Diverse Metamorphic Trajectories, Imbricated Ocean Plate Stratigraphy, and Fault Rocks, Yuba River Area, Feather River Ultramafic Belt, California. Cordilleran Section-109th Annual Meeting, San FranciscoGoogle Scholar
  24. Moores, E. M., 1970. Ultramafics and Orogeny, with Models of the US Cordillera and the Tethys. Nature, 228(5274): 837–842. https://doi.org/10.1038/228837a0 CrossRefGoogle Scholar
  25. Moores, E. M., 1982. Origin and Emplacement of Ophiolites. Reviews of Geophysics, 20(4): 735–760. https://doi.org/10.1029/rg020i004p00735 CrossRefGoogle Scholar
  26. Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55–76. https://doi.org/10.1007/bf01226262 CrossRefGoogle Scholar
  27. Peng, S. B., Liu, S., Lin, M. S., et al., 2016. Early Paleozoic Subductionin Cathaysia (I): New Evidence from Nuodong Ophiolite. Earth Science, 41(6): 765–778 (in Chinese with English Abstract)Google Scholar
  28. Robinson, P. T., Zhou, M. F., 2008. The Origin and Tectonic Setting of Ophiolites in China. Journal of Asian Earth Sciences, 32(5/6): 301–307. https://doi.org/10.1016/j.jseaes.2007.11.014 CrossRefGoogle Scholar
  29. Saleeby, J. B., 1982. Polygenetic Ophiolite Belt of the California Sierra Nevada: Geochronological and Tectonostratigraphic Development. Journal of Geophysical Research, 87(B3): 1803–1824. https://doi.org/10.1029/jb087ib03p01803 CrossRefGoogle Scholar
  30. Saleeby, J. B., 1992. Petrotectonic and Paleogeographic Settings of U.S. Cordilleran Ophiolites. In: Burchfiel, B. C., Lipman, P. W., Zoback, M. L., eds., The Cordilleran Orogen; Conterminous U. S. Geological Society of America, Boulder, Colorado, 632–682Google Scholar
  31. Saleeby, J. B., Shaw, H. F., Niemeyer, S., et al., 1989. U/Pb, Sm/Nd and Rb/Sr Geochronological and Isotopic Study of Northern Sierra Nevada Ophiolitic Assemblages, California. Contributions to Mineralogy and Petrology, 102(2): 205–220. https://doi.org/10.1007/bf00375341 CrossRefGoogle Scholar
  32. Sharp, W., 1988. Pre-Cretaceous Crustal Evolution of the Sierra Nevada Region, California. In: Ernst, W. G., ed., Metamorphism and Crustal Evolution of the Western United States. Rubey Volume VII. InPrentice-Hall, New JerseyGoogle Scholar
  33. Smart, C. M., Wakabayashi, J., 2009. Hot and Deep: Rock Record of Subduction Initiation and Exhumation of High-Temperature, High-Pressure Metamorphic Rocks, Feather River Ultramafic Belt, California. Lithos, 113(1/2): 292–305. https://doi.org/10.1016/j.lithos.2009.06.012 CrossRefGoogle Scholar
  34. Spray, J. G., 1984. Possible Causes and Consequences of Upper Mantle Decoupling and Ophiolite Displacement. Geological Society, London, Special Publications, 13(1): 255–268. https://doi.org/10.1144/gsl.sp.1984.013.01.21 CrossRefGoogle Scholar
  35. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  36. Wakabayashi, J., 1990. Counterclockwise P-T-T Paths from Amphibolites, Franciscan Complex, California: Relics from the Early Stages of Subduction Zone Metamorphism. The Journal of Geology, 98(5): 657–680. https://doi.org/10.1086/629432 CrossRefGoogle Scholar
  37. Wakabayashi, J., Dilek, Y., 2003. What Constitutes ‘Emplacement’ of an Ophiolite? Mechanisms and Relationship to Subduction Initiation and Formation of Metamorphic Soles. Geological Society, London, Special Publications, 218(1): 427–447. https://doi.org/10.1144/gsl.sp.2003.218.01.22 CrossRefGoogle Scholar
  38. Williams, H., Smyth, W. R., 1973. Metamorphic Aureoles beneath Ophiolite Suites and Alpine Peridotites; Tectonic Implications with West Newfoundland Examples. American Journal of Science, 273(7): 594–621. https://doi.org/10.2475/ajs.273.7.594 CrossRefGoogle Scholar
  39. Zhou, W., Guo, G., Liu, X., et al., 2016. Geochemical Characteristics and Tectonic Significances of the Rocks from Northeastern Jiangxi Ophiolite. Earth Science, 41(6): 84–96 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective DevelopmentPetroleum Exploration and Production Research Institute of SINOPECBeijingChina
  2. 2.Department of Earth and Environmental SciencesCalifornia State UniversityFresnoUSA
  3. 3.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  4. 4.Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina

Personalised recommendations