Advertisement

Journal of Earth Science

, Volume 30, Issue 1, pp 176–193 | Cite as

Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China

  • Ngong Roger Ngia
  • Mingyi HuEmail author
  • Da Gao
  • Zhonggui Hu
  • Chun-Yan Sun
Article
  • 5 Downloads

Abstract

Detailed petrographic, geochemical (O-C-Sr isotopes) and fluid inclusion studies of the deeply buried Cambrian carbonates in the West-central Tarim Basin revealed three types of crystalline dolomites (fine-crystalline, nonplanar-a(s), dolomite (RD1), fine- to medium-crystalline, planar-e(s) dolomite (RD2), and medium- to coarse-crystalline, nonplanar-a dolomite (RD3)), medium- to coarse-crystalline, nonplanar-a saddle dolomite cement (CD) and early and later-stage calcite cement. The occurrence of RD1 along low-amplitude stylolites points to link with pressure dissolution by which minor Mg ions were likely released for replacive dolomitization during early- to intermediate-burial seawater dolomitization. The increasing crystal sizes of RD2 and RD3 with irregular overgrowth rims suggests intense recrystallization and replacement upon the RD1 or remaining precursor limestones by dolomitizing fluids during late intermediate burial dolomitization. The overlap of δ18O, δ13C and 87Sr/86Sr values of RD1-RD3 and CD dolomite with coeval seawater values, suggests that the principal dolomitizing fluids that precipitated these dolomites was connate (Cambrian) seawater preserved in the host limestones/dolomites. Their high 87Sr/86Sr ratios suggest influx of radiogenic strontium into the Cambrian seawater. Two regimes of fluid flow are recognized in the study area: firstly, influx of magnesium-rich higher-temperature basinal brines along deep-seated faults/fractures, resulting in cementation by CD dolomite. Secondly, the incursion of meteoric waters, mixing with ascending higher-temperature basinal brines, and an increase in Ca2+/Mg2+ ratio in the fluids probably results in the precipitation of calcite cement in vugs and fractures.

Key words

Cambrian dolomites C-O-Sr isotopes burial dolomitization West-central Tarim Basin fluid flow regimes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was funded by the National Natural Science Foundation Project of China (Nos. 41372126 and 41772103), National Science and Technology Major Project of China (No. 2016ZX05007-002) and Natural Science Foundation Innovation Group Program of Hubei Province (No. 2015CFA024).The authors thank Dr. Qingjie Deng and Dr. Rong Li for their constructive suggestions during the preparation of the manuscript. We greatly appreciate the valuable comments and suggestions of the Editors and reviewers of the Journal of Earth Science, which helped us, improve the quality of this paper. The final publication is available at Springer via  https://doi.org/10.1007/s12583-017-0954-y.

References Cited

  1. Al-Aasm, I., 2003. Origin and Characterization of Hydrothermal Dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78/79: 9–15.  https://doi.org/10.1016/s0375-6742(03)00089-x CrossRefGoogle Scholar
  2. Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-Nacl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684.  https://doi.org/10.1016/0016-7037(93)90378-a CrossRefGoogle Scholar
  3. Burke, W. H., Denison, R. E., Hetherington, E. A., et al., 1982. Variation of Seawater 87Sr/86Sr Throughout Phanerozoic Time. Geology, 10(10): 516.  https://doi.org/10.1130/0091-7613(1982)10<516:vosstp>2.0.co;2 CrossRefGoogle Scholar
  4. Cai, C. F., Li, K. K., Li, H. T., et al., 2008. Evidence for Cross Formational Hot Brine Flow from Integrated 87Sr/86Sr, REE and Fluid Inclusions of the Ordovician Veins in Central Tarim, China. Applied Geochemistry, 23(8): 2226–2235.  https://doi.org/10.1016/j.apgeochem.2008.03.009 CrossRefGoogle Scholar
  5. Cai, C. F., Xie, Z. Y., Worden, R. H., et al., 2004. Methane-Dominated Thermochemical Sulphate Reduction in the Triassic Feixianguan Formation East Sichuan Basin, China: Towards Prediction of Fatal H2S Concentrations. Marine and Petroleum Geology, 21(10): 1265–1279.  https://doi.org/10.1016/j.marpetgeo.2004.09.003 CrossRefGoogle Scholar
  6. Cai, C. F., Zhang, C. M., Worden, R. H., et al., 2015. Application of Sulfur and Carbon Isotopes to Oil-Source Rock Correlation: A Case Study from the Tazhong Area, Tarim Basin, China. Organic Geochemistry, 83/84: 140–152CrossRefGoogle Scholar
  7. Cerling, T. E., Hay, R. L., 1986. An Isotopic Study of Paleosol Carbonates from Olduvai Gorge. Quaternary Research, 25(1): 63–78.  https://doi.org/10.1016/0033-5894(86)90044-x CrossRefGoogle Scholar
  8. Chen, D. Z., Qing, H. R., Yang, C., 2004. Multistage Hydrothermal Dolomites in the Middle Devonian (Givetian) Carbonates from the Guilin Area, South China. Sedimentology, 51(5): 1029–1051.  https://doi.org/10.1111/j.1365-3091.2004.00659.x CrossRefGoogle Scholar
  9. Chen, H. L., Yang, X. F., Dong, C. W., et al., 1997. Geological Thermal Events in Tarim Basin. Chinese Science Bullutin, 42(7): 580 (in Chinese with English Abstract)CrossRefGoogle Scholar
  10. Choquette, P. W., Hiatt, E. E., 2008. Shallow-Burial Dolomite Cement: A Major Component of many Ancient Sucrosic Dolomites. Sedimentology, 55(2): 423–460.  https://doi.org/10.1111/j.1365-3091.2007.00908.x CrossRefGoogle Scholar
  11. Davies, G. R., Smith, L. B. Jr., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641–1690.  https://doi.org/10.1306/05220605164 CrossRefGoogle Scholar
  12. Dickson, J. A. D., 1966. Carbonate Identification and Genesis as Revealed by Staining. Journal of Sedimentary Research, 36: 491–505.  https://doi.org/10.1306/74d714f6-2b21-11d7-8648000102c1865d Google Scholar
  13. Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013a. In Situ Stable Isotopic Constraints on Dolomitizing Fluids for the Hydrothermally-Originated Saddle Dolomites at Keping, Tarim Basin. Chinese Science Bulletin, 58(23): 2877–2882.  https://doi.org/10.1007/s11434-013-5801-7 CrossRefGoogle Scholar
  14. Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013b. Hydrothermal Alteration of Dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple Constraints from Petrology, Isotope Geochemistry and Fluid Inclusion Microthermometry. Marine and Petroleum Geology, 46: 270–286.  https://doi.org/10.1016/j.marpetgeo.2013.06.013 CrossRefGoogle Scholar
  15. Friedman, I., O’Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Fleischer, M., ed., Data of Geochemistry. U.S. Geological Survey Professional Paper 440–KK. 12CrossRefGoogle Scholar
  16. Gao, Z. Q., Fan, T. L., 2014. Intra-Platform Tectono-Sedimentary Response to Geodynamic Transition along the Margin of the Tarim Basin, NW China. Journal of Asian Earth Sciences, 96: 178–193CrossRefGoogle Scholar
  17. Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. Short Course 31. Society for Sedimentary Geology, Tulsa. 199CrossRefGoogle Scholar
  18. Guo, C., Chen, D. Z., Qing, H. R., et al., 2016. Multiple Dolomitization and Later Hydrothermal Alteration on the Upper Cambrian-Lower Ordovician Carbonates in the Northern Tarim Basin, China. Marine and Petroleum Geology, 72: 295–316.  https://doi.org/10.1016/j.marpetgeo.2016.01.023 CrossRefGoogle Scholar
  19. Han, J. F., Sun, C. H., Wang, Z. Y., et al., 2017. Superimposed Compound Karst Model and Oil and Gas Exploration of Carbonate in Tazhong Uplift, Earth Science--Journal of China University of Geosciences, 42(3): 410–420 (in Chinese with English Abstract)CrossRefGoogle Scholar
  20. Han, X. T., Bao, Z. Y., Xie, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science--Journal of China University of Geosciences, 41(1): 167–176 (in Chinese with English Abstract).CrossRefGoogle Scholar
  21. He, B. Z., Jiao, C. L., Xu, Z. Q., et al., 2016. The Paleotectonic and Paleogeography Reconstructions of the Tarim Basin and its Adjacent Areas (NW China) during the Late Early and Middle Paleozoic. Gondwana Research, 30: 191–206CrossRefGoogle Scholar
  22. Hitchon, B., Billings, G. K., Klovan, J. E., 1971. Geochemistry and Origin of Formation Waters in the Western Canada Sedimentary Basin—III. Factors Controlling Chemical Composition. Geochimica et Cosmochimica Acta, 35(6): 567–598.  https://doi.org/10.1016/0016-7037(71)90088-3 CrossRefGoogle Scholar
  23. Hu, M., Jia, Z., 1991. The Origin of Xiaqiulitaga Group Dolomite in Keping Area, Tarim Basin. Journal of Jianghan Petroleum Institute, 13 (2): 10–17 (in Chinese with English Abstract)Google Scholar
  24. Hu, M., Wu, Y., Hu, Z., et al.,2009. Deep Buried Dissolution of Ordovician Carbonates in Tazhong Area of Tarim Basin. Journal of Oil and Gas Technology, 31 (6): 49–54 (in Chinese with English Abstract)Google Scholar
  25. Jia, L. Q., Cai, C. F., Li, H. X., et al., 2016. Thermochemical Sulfate Reduction-Related Mesogenetic Dissolution of Deeply Buried Dolostone Reservoirs in the Tazhong Area. Acta Sedimentologica Sinica, 34(6): 1057–1067Google Scholar
  26. Jiang, L., Cai, C. F., Worden, R. H., et al., 2016. Multiphase Dolomitization of Deeply Buried Cambrian Petroleum Reservoirs, Tarim Basin, North-West China. Sedimentology, 63(7): 2130–2157.  https://doi.org/10.1111/sed.12300 CrossRefGoogle Scholar
  27. Jiang, L., Worden, R. H., Cai, C. F., 2015. Generation of Isotopically and Compositionally Distinct Water during Thermochemical Sulfate Reduction (TSR) in Carbonate Reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China. Geochimica et Cosmochimica Acta, 165: 249–262CrossRefGoogle Scholar
  28. Jiang, L., Worden, R. H., Cai, C. F., et al., 2014. Dolomitization of Gas Reservoirs: The Upper Permian Changxing and Lower Triassic Feixianguan Formations, Northeast Sichuan Basin, China. Journal of Sedimentary Research, 84(10): 792–815.  https://doi.org/10.2110/jsr.2014.65 CrossRefGoogle Scholar
  29. Kohout, F., Henry, H., Banks, J., 1977. Hydrogeology Related to Geothermal Conditions of the Floridan Plateau. In: Smith, K., L., Griffin, G., M. eds., The Geothermal Nature of the Florida Plateau. Florida Bureau of Geology Special Publication, 21: 1–34Google Scholar
  30. Land, L. S., 1983. The Application of Stable Isotopes to Studies of the Origin of Dolomite and to Problems of Diagenesis of Clastic Sediments. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 10: 4-1–4-22Google Scholar
  31. Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2): 112–125.  https://doi.org/10.5408/0022-1368-33.2.112 CrossRefGoogle Scholar
  32. Lin, C., Yang, H., Liu, J., et al., 2009. Paleostructural Geomorphology of the Paleozoic Central Uplift Belt and Its Constraint on the Development of Depositional Facies in the Tarim Basin. Science in China Series D: Earth Sciences, 52(6), 823–834.CrossRefGoogle Scholar
  33. Machel, H. G., 2004. Concept and Models of Dolomitization. In: Braithwaite, C. J. R., Rizzi, G., Darke, G., eds., The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society of London Special Publication, 235: 7–63.  https://doi.org/10.1144/GSL.SP.2004.235.01.02 Google Scholar
  34. Machel, H. G., Buschkuehle, B. E., 2008. Diagenesis of the Devonian Southesk-Cairn Carbonate Complex, Alberta, Canada: Marine Cementation, Burial Dolomitization, Thermochemical Sulfate Reduction, Anhydritization, and Squeegee Fluid Flow. Journal of Sedimentary Research, 78(5): 366–389.  https://doi.org/10.2110/jsr.2008.037 CrossRefGoogle Scholar
  35. Machel, H. G., Cavell, P. A., 1999. Low-Flux, Tectonically-Induced Squeegee Fluid Flow (“Hot Flash”) into the Rocky Mountain Foreland Basin. Bulletin of Canadian Petroleum Geology, 47(4): 510–533Google Scholar
  36. Machel, H. G., Lonnee, J., 2002. Hydrothermal Dolomite—A Product of Poor Definition and Imagination. Sedimentary Geology, 152 (3/4): 163–171Google Scholar
  37. Mansurbeg, H., Morad, D. L., Othman, R., et al., 2016. Hydrothermal Dolomitization of the Bekhme Formation (Upper Cretaceous), Zagros Basin, Kurdistan Region of Iraq: Record of Oil Migration and Degradation. Sedimentary Geology, 341: 147–162.  https://doi.org/10.1016/j.sedgeo.2016.05.015 CrossRefGoogle Scholar
  38. Merino, E., Canals, A., 2011. Self-Accelerating Dolomite-for-Calcite Replacement: Self-Organized Dynamics of Burial Dolomitization and Associated Mineralization. American Journal of Science, 311(7): 573–607.  https://doi.org/10.2475/07.2011.01 CrossRefGoogle Scholar
  39. Montañez, I. P., Osleger D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. Inside Gas Today, 10 (5): 1–7Google Scholar
  40. Packard, J. J., Al-Aasm, I., 2002. Dolomite Discrimination in the D-1: Round up the Usual Suspects. Diamond Jubilee Convention, June, 2002, Calgary Google Scholar
  41. Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789–821.  https://doi.org/10.1306/09071111029 CrossRefGoogle Scholar
  42. Rosenbaum, J., Sheppard, S. M. F., 1986. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochimica et Cosmochimica Acta, 50(6): 1147–1150.  https://doi.org/10.1016/0016-7037(86)90396-0 CrossRefGoogle Scholar
  43. Shao, L. Y., He, H., Peng, S. P., et al., 2002. Types and Origin of Dolomites of the Cambrian and Ordovician of Bachu Uplift Area in Tarim Basin. Journal of Palaeogeograpy, 4(2): 19–29 (in Chinese with English Abstract)Google Scholar
  44. Sibley, D. F., Gregg, J. M., 1987. Classification of Dolomite Rock Textures. Journal of Sedimentary Research, 57(6): 967–975.  https://doi.org/10.1306/212f8cba-2b24-11d7-8648000102c1865d Google Scholar
  45. Sun, H. W., Li, Y. Q., Li, Z. L., et al., 2016. Estimating the Parental Magma Composition and Temperature of the Xiaohaizi Cumulate-Bearing Ultramafic Rock: Implication for Magma Evolution of the Tarim Large Igneous Province, Northwestern China. Journal of Earth Science, 27(3): 519–528.  https://doi.org/10.1007/s12583-016-0676-4 CrossRefGoogle Scholar
  46. Tang, L. J., 1997. Major Evolutionary Stages of Tarim Basin in Phanerozoic Time. Earth Science Frontier, 4(3/4): 318–324 (in Chinese with English Abstract)Google Scholar
  47. Tucker, M. E., Wright, V. P., 2009. Carbonate Sedimentology. Blackwell, Oxford. 386–396Google Scholar
  48. Van Lith, Y., Warthmann, R., Vasconcelos, C., et al., 2003. Microbial Fossilization in Carbonate Sediments: A Result of the Bacterial Surface Involvement in Dolomite Precipitation. Sedimentology, 50(2): 237–245.  https://doi.org/10.1046/j.1365-3091.2003.00550.x CrossRefGoogle Scholar
  49. Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1/2/3): 59–88Google Scholar
  50. Whitaker, F. F., Xiao, Y. T., 2010. Reactive Transport Modeling of Early Burial Dolomitization of Carbonate Platforms by Geothermal Convection. AAPG Bulletin, 94(6): 889–917.  https://doi.org/10.1306/12090909075 CrossRefGoogle Scholar
  51. White, D. E., 1957. Thermal Waters of Volcanic Origin. Geological Society of America Bulletin, 68(12): 1637–1658.  https://doi.org/10.1130/0016-7606(1957)68[1637:twovo]2.0.co;2 CrossRefGoogle Scholar
  52. Worden, R. H., Smalley, P. C., Oxtoby, N. H., 1996. The Effects of Thermochemical Sulfate Reduction Upon Formation Water Salinity and Oxygen Isotopes in Carbonate Gas Reservoirs. Geochimica et Cosmochimica Acta, 60(20): 3925–3931.  https://doi.org/10.1016/0016-7037(96)00216-5 CrossRefGoogle Scholar
  53. Wu, S. Q., Zhu, J. Q., Wang, G. X., et al., 2008. Types and Origin of Cambrian-Ordovician Dolomites in Tarim Basin. Acta Petrologica Sinica, 24(6): 1390–1400 (in Chinese with English Abstract)Google Scholar
  54. Xu, K., Yu, B. S., Gong, H. N., et al., 2015. Carbonate Reservoirs Modified by Magmatic Intrusions in the Bachu Area, Tarim Basin, NW China. Geoscience Frontiers, 6(5): 779–790.  https://doi.org/10.1016/j.gsf.2015.02.002 CrossRefGoogle Scholar
  55. Yang, X. F., Tang, H., Wang, X. Z., et al., 2017. Dolomitization by Penesaline Sea Water in Early Cambrian Longwangmiao Formation, Central Sichuan Basin, China. Journal of Earth Science, 28(2): 305–314.  https://doi.org/10.1007/s12583-017-0761-5 CrossRefGoogle Scholar
  56. Yu, X., Yang, S. F., Chen, H. L., et al., 2011. Permian Flood Basalts from the Tarim Basin, Northwest China: SHRIMP Zircon U-Pb Dating and Geochemical Characteristics. Gondwana Research, 20(2/3): 485–497.  https://doi.org/10.1016/j.gr.2010.11.009 CrossRefGoogle Scholar
  57. Zhang, C. L., Xu, Y. G., Li, Z. X., et al., 2010. Diverse Permian Magmatism in the Tarim Block, NW China: Genetically Linked to the Permian Tarim Mantle Plume?. Lithos, 119(3/4): 537–552.  https://doi.org/10.1016/j.lithos.2010.08.007 CrossRefGoogle Scholar
  58. Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2017. Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing Formation Dolomite at Panlongdong, Northeastern Sichuan. Journal of Earth Science, 28(2): 333–346.  https://doi.org/10.1007/s12583-017-0724-x CrossRefGoogle Scholar
  59. Zhao, Z. J., Zhao, Y. B., Pan, M., et al., 2010. Cambrian Sequence Stratigraphic Framework in Tarim Basin. Geological Review, 56(5): 609–620 (in Chinese with English Abstract)Google Scholar
  60. Zhu, D. Y., Meng, Q. Q., Jin, Z. J., et al., 2015. Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China. Marine and Petroleum Geology, 59: 232–244CrossRefGoogle Scholar
  61. Zhu, W., Zhang, Z., Shu, L., et al., 2007. Uplift and Exhumation History of the Precambrian Basement, Northern Tarim: Evidence from Apatite Fission Track Data. Acta Petrologica Sinica, 23(7):1671–1682 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sedimentary Basin Research CenterYangtze UniversityWuhanChina
  2. 2.Hubei Cooperative Innovation Center for Unconventional Oil and GasWuhanChina
  3. 3.Key Laboratory of Exploration Technologies for Oil and Gas Resources of the Ministry of EducationYangtze UniversityWuhanChina
  4. 4.Department of GeologyUniversity of BueaBueaCameroon

Personalised recommendations