Differentiation of Continental Subduction Mode: Numerical Modeling

  • Tuoxin Yang
  • Pengpeng Huangfu
  • Yan ZhangEmail author


The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the lithospheric mantle. Using high-resolution thermo-mechanical numerical models, we systematically investigated the effects of crustal rheological strength and the convergence rate on the continental subduction mode. The model results reveal three basic modes of continental subduction, including slab break-off, steep subduction and continental flat-slab subduction. Whether lithospheric mantle of the overriding plate retreats or not during convergence enables the division of the first two modes into two sub-types, which are dominated by the crustal rheological strength. The mode of slab break-off develops under the conditions of low/moderate rheological strength of the continental crust and low convergence rate. In contrast, continental flat-slab subduction favors the strong crust and the high convergence rate. Otherwise, continental steep subduction occurs. The numerical results provide further implications for Geodynamics conditions and physical processes of different modes of continental collision that occur in nature.

Key Words

continental subduction slab break-off steep subduction continental flat-slab subduction numerical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB18000000), the NSFC Project (Nos. 41622404, 41688103, U1701641 and 41704091), the 973 Project (No. 2015CB856106). Numerical simulations were run with the clusters of National Supercomputer Center in Guangzhou (Tianhe-II). The final publication is available at Springer via

References Cited

  1. Bittner, D., Schmeling, H., 1995. Numerical Modelling of Melting Processes and Induced Diapirism in the Lower Crust. Geophysical Journal International, 123(1): 59–70. CrossRefGoogle Scholar
  2. Burg, J. P., Podladchikov, Y., 2000. From Buckling to Asymmetric Folding of the Continental Lithosphere: Numerical Modelling and Application to the Himalayan Syntaxes. Geological Society, London, Special Publications, 170(1): 219–236. CrossRefGoogle Scholar
  3. Burg, J. P., Gerya, T. V., 2005. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 23(2): 75–95. CrossRefGoogle Scholar
  4. Burov, E., Francois, T., Yamato, P., et al., 2014a. Mechanisms of Continental Subduction and Exhumation of HP and UHP Rocks. Gondwana Research, 25(2): 464–493. CrossRefGoogle Scholar
  5. Burov, E., Francois, T., Agard, P., et al., 2014b. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212–250. CrossRefGoogle Scholar
  6. Burov, E. B., Molnar, P., 1998. Gravity Anomalies over the Ferghana Valley (Central Asia) and Intracontinental Deformation. Journal of Geophysical Research: Solid Earth, 103(B8): 18137–18152. CrossRefGoogle Scholar
  7. Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13–24. CrossRefGoogle Scholar
  8. Chiarabba, C., Chiodini, G., 2013. Continental Delamination and Mantle Dynamics Drive Topography, Extension and Fluid Discharge in the Apennines. Geology, 41(6): 715–718. CrossRefGoogle Scholar
  9. Chiarabba, C., Giacomuzzi, G., Bianchi, I., et al., 2014. From Underplating to Delamination-Retreat in the Northern Apennines. Earth and Planetary Science Letters, 403: 108–116. CrossRefGoogle Scholar
  10. Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals. AGU Reference Shelf, 3: 105–126. Google Scholar
  11. Cloetingh, S., Burov, E., Poliakov, A., 1999. Lithosphere Folding: Primary Response to Compression? (From Central Asia to Paris Basin). Tectonics, 18(6): 1064–1083. CrossRefGoogle Scholar
  12. Cloetingh, S. A. P. L., Burov, E., Matenco, L., et al., 2004. Thermo-Mechanical Controls on the Mode of Continental Collision in the SE Carpathians (Romania). Earth and Planetary Science Letters, 218(1/2): 57–76. CrossRefGoogle Scholar
  13. Conrad, C. P., Molnar, P., 1997. The Growth of Rayleigh-Taylor-Type Instabilities in the Lithosphere for Various Rheological and Density Structures. Geophysical Journal International, 129(1): 95–112. CrossRefGoogle Scholar
  14. Currie, C. A., Beaumont, C., Huismans, R. S., 2007. The Fate of Subducted Sediments: A Case for Backarc Intrusion and Underplating. Geology, 35(12): 1111. CrossRefGoogle Scholar
  15. Dai, L. Q., Zheng, Y. F., He, H. Y., et al., 2016. Postcollisional Mafic Igneous Rocks Record Recycling of Noble Gases by Deep Subduction of the Continental Crust. Lithos, 252/253: 135–144. CrossRefGoogle Scholar
  16. Faccenda, M., Gerya, T. V., Chakraborty, S., 2008. Styles of Post-Subduction Collisional Orogeny: Influence of Convergence Velocity, Crustal Rheology and Radiogenic Heat Production. Lithos, 103(1/2): 257–287. CrossRefGoogle Scholar
  17. Gerya, T. V., Yuen, D. A., 2003a. Rayleigh-Taylor Instabilities from Hydration and Melting Propel ‘Cold Plumes’ at Subduction Zones. Earth and Planetary Science Letters, 212(1/2): 47–62. CrossRefGoogle Scholar
  18. Gerya, T. V., Yuen, D. A., 2003b. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors, 140(4): 293–318. CrossRefGoogle Scholar
  19. Gray, R., Pysklywec, R. N., 2012. Geodynamic Models of Mature Continental Collision: Evolution of an Orogen from Lithospheric Subduction to Continental Retreat/Delamination. Journal of Geophysical Research: Solid Earth, 117(B3).
  20. Houseman, G. A., Molnar, P., 1997. Gravitational (Rayleigh-Taylor) Instability of a Layer with Non-Linear Viscosity and Convective Thinning of Continental Lithosphere. Geophysical Journal International, 128(1): 125–150. CrossRefGoogle Scholar
  21. Huangfu, P. P., Wang, Y. J., Fan, W. M., et al., 2017. Dynamics of Unstable Continental Subduction: Insights from Numerical Modeling. Science China: Earth Sciences, 60(2): 218–234. CrossRefGoogle Scholar
  22. Ji, S. C., Zhao, P. L., 1993. Flow Laws of Multiphase Rocks Calculated from Experimental Data on the Constituent Phases. Earth and Planetary Science Letters, 117(1/2): 181–187. CrossRefGoogle Scholar
  23. Kirby, S. H., Kronenberg, A. K., 1987. Rheology of the Lithosphere: Selected Topics. Reviews of Geophysics, 25(6): 1219–1244. CrossRefGoogle Scholar
  24. Li, C., Van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1/2): 157–168. CrossRefGoogle Scholar
  25. Li, F. C., Sun, Z., Zhang, J. Y., 2018. Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion. Earth Scinece, 43(10): 3762–3777 (in Chinese with English Abstract)Google Scholar
  26. Li, Z. H., Gerya, T. V., 2009. Polyphase Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Subduction Zone: Numerical Modeling and Application to the Sulu Ultrahigh-Pressure Terrane in Eastern China. Journal of Geophysical Research, 114(B9): B09406. CrossRefGoogle Scholar
  27. Li, Z. H., Gerya, T. V., Burg, J. P., 2010. Influence of Tectonic Overpressure OnP-Tpaths of HP-UHP Rocks in Continental Collision Zones: Thermomechanical Modelling. Journal of Metamorphic Geology, 28(3): 227–247. CrossRefGoogle Scholar
  28. Li, Z. H., Xu, Z. Q., Gerya, T. V., 2011. Flat versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters, 301(1/2): 65–77. CrossRefGoogle Scholar
  29. Li, Z. H., 2014. A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation. Science China: Earth Sciences, 57(1): 47–69. CrossRefGoogle Scholar
  30. Li, Z. Y., Li, Y. L., Wijbrans, J. R., et al., 2018. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng. Journal of Earth Science, 29(5): 1151–1166. CrossRefGoogle Scholar
  31. Nabelek, J., Hetenyi, G., Vergne, J., et al., 2009. Underplating in the Himalaya-Tibet Collision Zone Revealed by the HI-CLIMB Experiment. Science, 325(5946): 1371–1374. CrossRefGoogle Scholar
  32. Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37–43. CrossRefGoogle Scholar
  33. Radulescu, F., 1988. Seismic Models of the Crustal Structure in Romania. Rev. Roum. Geol. Geophys. Geogr. Ser. Geophys, 32: 13–17Google Scholar
  34. Ranalli, G., 1995. Rheology of the Earth. Springer, Berlin. Google Scholar
  35. Schmeling, H., Babeyko, A. Y., Enns, A., et al., 2008. A Benchmark Comparison of Spontaneous Subduction Models—Towards a Free Surface. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 198–223. CrossRefGoogle Scholar
  36. Schmidt, M. W., Poli, S., 1998. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters, 163(1/2/3/4): 361–379. CrossRefGoogle Scholar
  37. Tilmann, F., Ni, J., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300(5624): 1424–1427. CrossRefGoogle Scholar
  38. Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  39. Ueda, K., Gerya, T., Sobolev, S. V., 2008. Subduction Initiation by Thermal-Chemical Plumes: Numerical Studies. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 296–312. CrossRefGoogle Scholar
  40. Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7–20. CrossRefGoogle Scholar
  41. Warren, C. J., 2013. Exhumation of (Ultra-)High-Pressure Terranes: Concepts and Mechanisms. Solid Earth, 4(1): 75–92. CrossRefGoogle Scholar
  42. Wortel, M. J. R., Spakman, W., 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498): 1910–1917. CrossRefGoogle Scholar
  43. Zhang, L., Ye, Y., Qin, S., et al., 2018. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1040–1048. CrossRefGoogle Scholar
  44. Zhao, J. M., Yuan, X. H., Liu, H. B., et al., 2010. The Boundary between the Indian and Asian Tectonic Plates below Tibet. Proceedings of the National Academy of Sciences, 107(25): 11229–11233. CrossRefGoogle Scholar
  45. Zheng, J. P., Sun, M., Griffin, W. L., et al., 2008. Age and Geochemistry of Contrasting Peridotite Types in the Dabie UHP Belt, Eastern China: Petrogenetic and Geodynamic Implications. Chemical Geology, 247(1/2): 282–304. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.Southern Laboratory of Ocean Science and EngineeringZhuhaiChina
  3. 3.Key Laboratory of Computational Geodynamics, College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations