Journal of Earth Science

, Volume 29, Issue 2, pp 342–352 | Cite as

Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions

  • Bi Zhu
  • Shaoyong Jiang
  • Daohui Pi
  • Lu Ge
  • Jinghong Yang
Petroleum Geology

Abstract

In the present study, we carried out trace element analyses of black shales of the Ediacaran Doushantou Formation from two sections (Jiulongwan, Baiguoyuan) in Hubei Province, South China. Mo-U characteristics of black shales from the two sections and compiled Mo-U data of Doushantuo black shales from sections of a variety of sedimentary facies described the temporal/spatial variability in the redox conditions of paleo-seawater during deposition of the Doushantuo Formation. Changes in Mo-U patterns of the Doushantuo Member II (DST2) shales of open marine environments are consistent with a shift from a predominately oxic to a predominately anoxic ocean during their deposition. Mo-U patterns of the DST2 black shales from intra-shelf sections reflect basin restriction may have happened in the intra-shelf basin and are compatible with the redox-stratified model of the intra-shelf basin. Mo-U patterns of black shales of the Doushantuo Member IV (DST4) reveal that the shales from intra-shelf sections have more pronounced Mo enrichment and more significant enrichment of Mo over U than the slope shales, indicating the operation of a Mn particulate shuttle in the intra-shelf basin. High Mo/TOC ratios of the DST4 at the intra-shelf sections, in combination with similar Mo-TOC patterns of the DST4 from both intra-shelf and slope sections, indicate the intrashelf basin was well connected to the open ocean during deposition of the DST4.

Key words

Doushantuo Formation Mo-U covariation Mo/TOC South China 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 41302018, 41230102, 41203021), the National 973 Project (No. 2013CB835000), the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (No. PRP/open-1305) and the PhD Programs Foundation of Ministry of Education of China (No. 20130094120008). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0907-5.

References Cited

  1. Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 279–298. https://doi.org/10.1029/2004pa001112CrossRefGoogle Scholar
  2. Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009CrossRefGoogle Scholar
  3. Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002CrossRefGoogle Scholar
  4. Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225. https://doi.org/10.13039/100000001CrossRefGoogle Scholar
  5. Algeo, T. J., 2004. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater?. Geology, 32(12): 1057. https://doi.org/10.1130/g20896.1CrossRefGoogle Scholar
  6. Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event?. Science, 317(5846): 1903–1906. https://doi.org/10.1126/science.1140325CrossRefGoogle Scholar
  7. Bjerrum, C. J., Canfield, D. E., 2011. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences, 108(14): 5542–5547. https://doi.org/10.1073/pnas.1101755108CrossRefGoogle Scholar
  8. Brasier, M., Antciliffe, J., 2004. Paleobiology: Decoding the Ediacaran Enigma. Science, 305(5687): 1115–1117. https://doi.org/10.1126/science.1102673CrossRefGoogle Scholar
  9. Bristow, T. F., Kennedy, M. J., Derkowski, A., et al., 2009. Mineralogical Constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 106(32): 13190–13195. https://doi.org/10.1073/pnas.0901080106CrossRefGoogle Scholar
  10. Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808): 92–95. https://doi.org/10.1126/science.1135013CrossRefGoogle Scholar
  11. Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org10.1038/ncomms8142CrossRefGoogle Scholar
  12. Condon, D., Zhu, M., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98. https://doi.org/10.1126/science.1107765CrossRefGoogle Scholar
  13. Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1–4): 65–78. https://doi.org/10.1016/s0012-821x(96)00204-xCrossRefGoogle Scholar
  14. Fan, H. F., Zhu, X. K., Wen, H. J., et al., 2014. Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 140: 80–94. https://doi.org/10.1016/j.gca.2014.05.029CrossRefGoogle Scholar
  15. Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747. https://doi.org/10.1038/nature05345CrossRefGoogle Scholar
  16. Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran–Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194–216. https://doi.org/10.1016/j.paleo.2007.03.016CrossRefGoogle Scholar
  17. Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 103–129. https://doi.org/10.1016/j.paleo.2007.02.028CrossRefGoogle Scholar
  18. Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337–350. https://doi.org/10.1016/j.precamres.2010.04.007CrossRefGoogle Scholar
  19. Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1/2/3): 65–82. https://doi.org/10.1016/0009-2541(92)90031-yCrossRefGoogle Scholar
  20. Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849. https://doi.org/10.1016/j.gr.2011.01.006CrossRefGoogle Scholar
  21. Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-xCrossRefGoogle Scholar
  22. Kendall, B., Komiya, T., Lyons, T. W., et al., 2015. Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 156: 173–193. https://doi.org/10.13039/100000001CrossRefGoogle Scholar
  23. Kendall, B. S., 2008. Rhenium-Osmium Geochronology of Precambrian Organic-Rich Sedimentary Rocks, Systematics and Applications: [Dissertation]. University of Alberta, Edmonton, Alberta. 59Google Scholar
  24. Kendall, B., Creaser, R. A., Selby, D., 2009. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 326(1): 85–107. https://doi.org/10.1144/SP326.5CrossRefGoogle Scholar
  25. Knoll, A. H., Walter, M. R., Narbonne, G. M., et al., 2004. Geology: A New Period for the Geologic Time Scale. Science, 305(5684): 621–622. https://doi.org/10.1126/science.1098803CrossRefGoogle Scholar
  26. Knoll, A., Walter, M., Narbonne, G., et al., 2006. The Ediacaran Period: A New Addition to the Geologic Time Scale. Lethaia, 39(1): 13–30. https://doi.org/10.1080/00241160500409223CrossRefGoogle Scholar
  27. Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83. https://doi.org/10.1126/science.1182369CrossRefGoogle Scholar
  28. Li, C., Zhu, M. Y., Chu, X. L., 2016. Preface: Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth: New Contributions from China. Journal of Earth Science, 27(2): 167–169. https://doi.org/10.1007/s12583-016-0697-1CrossRefGoogle Scholar
  29. Liu, P. J., Yin, C. Y., Gao, L. Z., et al., 2009. New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and its Zircon SHRIMP U-Pb Age. Science Bulletin, 54(6): 1058–1064. https://doi.org/10.1007/s11434-008-0589-6CrossRefGoogle Scholar
  30. Liu, P. J., Chen, S. M., Zhu, M. Y., et al., 2014. High-Resolution Biostratigraphic and Chemostratigraphic Data from the Chenjiayuanzi Section of the Doushantuo Formation in the Yangtze Gorges Area, South China: Implication for Subdivision and Global Correlation of the Ediacaran System. Precambrian Research, 249: 199–214. https://doi.org/10.1016/j.precamres.2014.05.014CrossRefGoogle Scholar
  31. Liu, P. J., Yin, C. Y., Chen, S. M., et al., 2013. The Biostratigraphic Succession of Acanthomorphic Acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges Area, South China and Its Biostratigraphic Correlation with Australia. Precambrian Research, 225: 29–43. https://doi.org/10.1016/j.precamres.2011.07.009CrossRefGoogle Scholar
  32. Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506(7488): 307–315. https://doi.org/10.1038/nature13068CrossRefGoogle Scholar
  33. McArthur, J. M., Algeo, T. J., van de Schootbrugge, B., et al., 2008. Basinal Restriction, Black Shales, Re-Os Dating, and the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 23(4): PA4217. https://doi.org/10.1029/2008pa001607CrossRefGoogle Scholar
  34. McCall, G. J. H., 2006. The Vendian (Ediacaran) in the Geological Record: Enigmas in Geology’s Prelude to the Cambrian Explosion. Earth-Science Reviews, 77(1/2/3): 1–229. https://doi.org/10.1016/j.earscirev.2005.08.004CrossRefGoogle Scholar
  35. McFadden, K. A., Huang, J., Chu, X., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 105(9): 3197–3202. https://doi.org/10.1073/pnas.0708336105CrossRefGoogle Scholar
  36. Mi, T. W., Lin, L., Pang, Y. C., et al., 2010. The Sequence Stratigraphy and Genesis of Phosphorites of Doushantuo Formation at Baiguoyuan, Yichang, Hubei. Acta Sedimentologica Sinica, 28(3): 471–480 (in Chinese with English Abstract)Google Scholar
  37. Och, L. M., Cremonese, L., Shields-Zhou, G. A., et al., 2015. Palaeoceanographic Controls on Spatial Redox Distribution over the Yangtze Platform during the Ediacaran–Cambrian Transition. Sedimentology, 63(2): 378–410. https://doi.org/10.13039/501100001659CrossRefGoogle Scholar
  38. Perkins, R. B., Piper, D. Z., Mason, C. E., 2008. Trace-Element Budgets in the Ohio/Sunbury Shales of Kentucky: Constraints on Ocean Circulation and Primary Productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(1/2): 14–29. https://doi.org/10.1016/j.paleo.2008.04.012CrossRefGoogle Scholar
  39. Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences, 110(14): 5357–5362. https://doi.org/10.1073/pnas.1208622110CrossRefGoogle Scholar
  40. Ries, J. B., Fike, D. A., Pratt, L. M., et al., 2009. Superheavy Pyrite (34Spyr>34SCAS) in the Terminal Proterozoic Nama Group, Southern Namibia: A Consequence of Low Seawater Sulfate at the Dawn of Animal Life. Geology, 37(8): 743–746. https://doi.org/10.1130/g25775a.1CrossRefGoogle Scholar
  41. Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373–391. https://doi.org/10.1016/j.chemgeo.2003.12.029CrossRefGoogle Scholar
  42. Sahoo, S. K., Planavsky, N. J., Jiang, G., et al., 2016. Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 14(5): 457–468. https://doi.org/10.13039/501100001809CrossRefGoogle Scholar
  43. Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489(7417): 546–549. https://doi.org/10.1038/nature11445CrossRefGoogle Scholar
  44. Scott, C., Lyons, T. W., Bekker, A., et al., 2008. Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 452(7186): 456–459. https://doi.org/10.1038/nature06811CrossRefGoogle Scholar
  45. Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324–325: 46–58. https://doi.org/10.1016/j.chemgeo.2011.09.009CrossRefGoogle Scholar
  46. Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012CrossRefGoogle Scholar
  47. Vernhet, E., Reijmer, J. J. G., 2010. Sedimentary Evolution of the Ediacaran Yangtze Platform Shelf (Hubei and Hunan Provinces, Central China). Sedimentary Geology, 225(3/4): 99–115. https://doi.org/10.1016/j.sedgeo.2010.01.005CrossRefGoogle Scholar
  48. Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155–1158. https://doi.org/10.1126/science.272.5265.1155CrossRefGoogle Scholar
  49. Xiao, S. H., Muscente, A. D., Chen, L., et al., 2014. The Weng'an Biota and the Ediacaran Radiation of Multicellular Eukaryotes. National Science Review, 1(4): 498–520. https://doi.org/10.1093/nsr/nwu061CrossRefGoogle Scholar
  50. Xiao, S. H., Yuan, X. L., Steiner, M., et al., 2002. Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76(2): 347–376. https://doi.org/10.1666/0022-3360(2002)076<0347:mcciat>2.0.co;2CrossRefGoogle Scholar
  51. Xiao, S. H., Knoll, A. H., 2007. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 32(3): 219–238. https://doi.org/10.1111/j.1502-3931.1999.tb00541.xCrossRefGoogle Scholar
  52. Yin, L. M., Zhu, M. Y., Knoll, A. H., et al., 2007. Doushantuo Embryos Preserved Inside Diapause Egg Cysts. Nature, 446(7136): 661–663. https://doi.org/10.1038/nature05682CrossRefGoogle Scholar
  53. Zhai, L. N., Wu, C. D., Ye, Y., et al., 2016. Marine Redox Variations during the Ediacaran–Cambrian Transition on the Yangtze Platform, South China. Geological Journal. https://doi.org/10.1002/gj.2878Google Scholar
  54. Zheng, Y., Anderson, R. F., van Geen, A., et al., 2000. Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24): 4165–4178. https://doi.org/10.1016/s0016-7037(00)00495-6CrossRefGoogle Scholar
  55. Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 279–286. https://doi.org/10.1016/j.paleo.2008.10.024CrossRefGoogle Scholar
  56. Zhou, C. M., Xie, G. W., McFadden, K., et al., 2007. The Diversification and Extinction of Doushantuo-Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 42(3/4): 229–262. https://doi.org/10.1002/gj.1062Google Scholar
  57. Zhu, B., Becker, H., Jiang, S. Y., et al., 2013. Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 225(2013): 67–76. https://doi.org/10.1016/j.precamres.2012.02.002CrossRefGoogle Scholar
  58. Zhu, M. Y., Zhang, J. M., Steiner, M., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960. https://doi.org/10.1080/10020070312331344710CrossRefGoogle Scholar
  59. Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225(1): 7–28. https://doi.org/10.1016/j.precamres.2011.07.019CrossRefGoogle Scholar
  60. Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 7–61. https://doi.org/10.1016/j.paleo.2007.03.025CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Isotope Hydrology, School of Earth Sciences and EngineeringHohai UniversityNanjingChina
  2. 2.State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Resources, Collaborative Innovation Center for Exploration of Strategic Mineral ResourcesChina University of GeosciencesWuhanChina
  3. 3.State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations