Advertisement

Journal of Earth Science

, Volume 29, Issue 6, pp 1359–1371 | Cite as

Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

  • Shu Li
  • Zhenming PengEmail author
  • Hao Wu
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Abstract

Inversion of Young’s modulus, Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective. However, the existing methods do not take full advantage of the prior information, without considering the lateral continuity of the inversion results, and need to invert the reflectivity first. In this paper, we propose multi-gather simultaneous inversion for pre-stack seismic data. Meanwhile, the total variation (TV) regularization, L1 norm regularization and initial model constraint are used. In order to solve the objective function contains L1 norm, TV norm and L2 norm, we develop an algorithm based on split Bregman iteration. The main advantages of our method are as follows: (1) The elastic parameters are calculated directly from objective function rather than from their reflectivity, therefore the stability and accuracy of the inversion process can be ensured. (2) The inversion results are more accordance with the geological prior information. (3) The lateral continuity of the inversion results are improved. The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.

Key words

elastic parameter pre-stack inversion multi-gather regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61775030, 61571096, 41301460, 61362018, and 41274127), and the key projects of Hunan Provincial Department of Education (No. 16A174). The authors thank the referees for their valuable suggestions. The authors also thank Chengdu Jingshi petroleum Technology Co., Ltd for providing us with the field data. The final publication is available at Springer via  https://doi.org/10.1007/s12583-017-0905-7.

References Cited

  1. Baraniuk, R., 2007. Compressive Sensing. IEEE Signal Processing Magazine, 24(4): 118–121. https://doi.org/10.1109/msp.2007.4286571CrossRefGoogle Scholar
  2. Chen, S. S., Donoho, D. L., Saunders, M. A., 2001. Atomic Decomposition by Basis Pursuit. SIAM Review, 43(1): 129–159. https://doi.org/10.1137/s003614450037906xCrossRefGoogle Scholar
  3. Donoho, D. L., 2006. Compressed Sensing. IEEE Transactions on Information Theory, 52(4): 1289–1306. https://doi.org/10.1109/TIT.2006.871582CrossRefGoogle Scholar
  4. Gholami, A., 2015. Nonlinear Multichannel Impedance Inversion by Total-Variation Regularization. Geophysics, 80(5): R217–R224. https://doi.org/10.1190/geo2015-0004.1CrossRefGoogle Scholar
  5. Goldstein, T., Osher, S., 2009. The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences, 2(2): 323–343. https://doi.org/10.1137/080725891CrossRefGoogle Scholar
  6. Hamid, H., Pidlisecky, A., 2015. Multitrace Impedance Inversion with Lateral Constraints. Geophysics, 80(6): M101–M111. https://doi.org/10.1190/geo2014-0546.1CrossRefGoogle Scholar
  7. Harris, N. B., Miskimins, J. L., Mnich, C. A., 2011. Mechanical Anisotropy in the Woodford Shale, Permian Basin: Origin, Magnitude, and Scale. The Leading Edge, 30(3): 284–291. https://doi.org/10.1190/1.3567259CrossRefGoogle Scholar
  8. Huang, W., Zhou, H. W., 2015. Least-Squares Seismic Inversion with Stochastic Conjugate Gradient Method. Journal of Earth Science, 26(4): 463–470. https://doi.org/10.1007/s12583-015-0553-8CrossRefGoogle Scholar
  9. Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press, New York. 23. https://doi.org/10.1017/CBO9780511626753CrossRefGoogle Scholar
  10. Pérez, D. O., Velis, D. R., Sacchi, M. D., 2014. Blocky Inversion of Prestack Seismic Data Using Mixed-Norms. 2014 SEG Annual Meeting, Denver. 3106–3111. https://doi.org/10.1190/segam2014-0801.1Google Scholar
  11. Rickman, R., Mullen, M. J., Petre, J. E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition, Halliburton. 21–24. https://doi.org/10.2118/115258-MSGoogle Scholar
  12. Rudin, L. I., Osher, S., Fatemi, E., 1992. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60(1/2/3/4): 259–268. https://doi.org/10.1016/0167-2789(92)90242-fCrossRefGoogle Scholar
  13. Russell, B. H., Dommico, S., 1988. Introduction to Seismic Inversion Methods. Society of Exploration Geophysicists, Tulsa. https://doi.org/10.1190/1.9781560802303CrossRefGoogle Scholar
  14. Russell, B. H., 2014. Prestack Seismic Amplitude Analysis: An Integrated Overview. Interpretation, 2(2): SC19–SC36. https://doi.org/10.1190/int-2013-0122.1CrossRefGoogle Scholar
  15. Sena, A., Castillo, G., Chesser, K., et al., 2011. Seismic Reservoir Characterization in Resource Shale Plays: Stress Analysis and Sweet Spot Discrimination. The Leading Edge, 30(7): 758–764. https://doi.org/10.1190/1.3609090CrossRefGoogle Scholar
  16. Walker, C., Ulrych, T. J., 1983. Autoregressive Recovery of the Acoustic Impedance. Geophysics, 48(10): 1338–1350. https://doi.org/10.1190/1.1441414CrossRefGoogle Scholar
  17. Yilmaz, Ö., 2001. Seismic Data Analysis. Society of Exploration Geophysicists, Tulsa. 1809. https://doi.org/10.1190/1.9781560801580CrossRefGoogle Scholar
  18. Yin, X. Y., Liu, X. J., Zong, Z. Y., 2015. Pre-Stack Basis Pursuit Seismic Inversion for Brittleness of Shale. Petroleum Science, 12(4): 618–627. https://doi.org/10.1007/s12182-015-0056-3CrossRefGoogle Scholar
  19. Yuan, S. Y., Wang, S. X., Luo, C. M., et al., 2015. Simultaneous Multitrace Impedance Inversion with Transform-Domain Sparsity Promotion. Geophysics, 80(2): R71–R80. https://doi.org/10.1190/geo2014-0065.1CrossRefGoogle Scholar
  20. Zhang, F. C., Dai, R. H., Liu, H. Q., 2014. Seismic Inversion Based on L1-Norm Misfit Function and Total Variation Regularization. Journal of Applied Geophysics, 109: 111–118. https://doi.org/10.1016/j.jappgeo.2014.07.024CrossRefGoogle Scholar
  21. Zhang, J., Liu, H. S., Tong, S. Y., et al., 2015. Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion. Journal of Earth Science, 26(4): 556–566. https://doi.org/10.1007/s12583-015-0564-5CrossRefGoogle Scholar
  22. Zhang, R., Sen, M. K., Srinivasan, S., 2013. A Prestack Basis Pursuit Seismic Inversion. Geophysics, 78(1): R1–R11. https://doi.org/10.1190/geo2011-0502.1CrossRefGoogle Scholar
  23. Zong, Z.-Y., Yin, X.-Y., Zhang, F., et al., 2012. Reflection Coefficient Equation and Pre-Stack Seismic Inversion with Young’s Modulus and Poisson Ratio. Chinese Journal of Geophysics, 55(11): 3786–3794. https://doi.org/10.6038/j.issn.0001-5733.2012.11.025 (in Chinese with English Abstract)Google Scholar
  24. Zong, Z.-Y., Yin, X.-Y., Wu, G. C., 2013. Elastic Impedance Parameterization and Inversion with Young’s Modulus and Poisson’s Ratio. Geophysics, 78(6): N35–N42. https://doi.org/10.1190/geo2012-0529.1CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Center for Information GeoscienceUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.School of Information Science and EngineeringJishou UniversityJishouChina

Personalised recommendations