Journal of Earth Science

, Volume 29, Issue 6, pp 1419–1430 | Cite as

Crustal Structure of Yunnan Province of China from Teleseismic Receiver Functions: Implications for Regional Crust Evolution

  • Fang Wang
  • Shuangxi ZhangEmail author
  • Mengkui Li
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs


Yunnan Province is located on the southeastern margin of Tibet and represents an important marker in understanding the tectonic evolution of Tibetan Plateau. In this study, we calculated teleseismic P-wave receiver functions at 49 permanent broadband seismic stations in Yunnan Province and estimated crustal thickness and the bulk crust ratios of P-wave to S-wave velocities using the H-κ method together with more detailed crustal structural profiles from the common conversion point stacking method. There is a significant transition of Moho interface and lower crustal composition along latitude 26°N in northwestern Yunnan. Decrease of crustal thickness with a concomitant increase of Poisson’s ratio occurs at station CUX. An interesting phenomenon is that a step-like Moho fashion is observed at several stations, which might correspond to local thermal activities, such as partial melt/lower crust delamination. Our results show changes in crustal properties appear to be associated with varieties in upper mantle structure and compositions, combined with other previous studies. We propose the controlling factor of the dynamic processes below 26°N is the result of eastern forward subduction of the Indian Plate; the northern part is controlled by the redirected material flow from the SE Tibet.

Key words

crustal structure receiver function Poisson’s ratio tectonic evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Hok Sum Fok and James Hammond for their serious reading of the original work and providing many suggestive advices. We thank two anonymous reviewers and editors for their detailed reviews that improve this manuscript. We also thank Robert B. Herrmann and Zhu Lupei for their CPS (Computer Programs in Seismology) package and H-κ code separately. Waveform data for this study were provided by Data Management Center of Yunnan Seismic Network. This study was supported by the 973 Project of China (No. 2013CB733303) and the National Natural Science Foundation of China (No. 41474093). The final publication is available at Springer via

References Cited

  1. Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. CrossRefGoogle Scholar
  2. Bao, X. W., Sun, X. X., Xu, M. J., et al., 2015. Two Crustal Low-Velocity Channels beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Earth and Planetary Science Letters, 415: 16–24. CrossRefGoogle Scholar
  3. Chen, M., Huang, H., Yao H., et al., 2014. Low Wave Speed Zones in the Crust beneath SE Tibet Revealed by Ambient Noise Adjoint Tomography. Geophysical Research Letters, 41(2): 334–340. CrossRefGoogle Scholar
  4. Christensen, N. I., 1996. Poisson’s Ratio and Crustal Seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139–3156. Google Scholar
  5. Christensen, N. I., Fountain, D. M., 1975. Constitution of the Lower Continental Crust Based on Experimental Studies of Seismic Velocities in Granulite. Geological Society of America Bulletin, 86(2): 227–236.<227:cotlcc>;2CrossRefGoogle Scholar
  6. Clark, M. K., Royden, L. H., 2000. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 28(8): 703–706.<703:tobtem>;2CrossRefGoogle Scholar
  7. Frederiksen, A. W., Delaney, C., 2015. Deriving Crustal Properties from the P Coda without Deconvolution: The Southwestern Superior Province, North America. Geophysical Journal International, 201(3): 1491–1506. CrossRefGoogle Scholar
  8. Hammond, J. O. S., 2014. Constraining Melt Geometries beneath the Afar Depression, Ethiopia from Teleseismic Receiver Functions: The Anisotropic H-Κ stacking Technique. Geochemistry, Geophysics, Geosystems, 15(4): 1316–1332. CrossRefGoogle Scholar
  9. He, C. S., Santosh, M., Wu, J. P., et al., 2014. Plume or no Plume: Emeishan Large Igneous Province in Southwest China Revisited from Receiver Function Analysis. Physics of the Earth and Planetary Interiors, 232: 72–78. CrossRefGoogle Scholar
  10. He, C. S., Zhu, L. P., Wang, Q. C., 2009. The Significance of Crust Structure and Continental Dynamics Inferred from Receiver Functions in West Yunnan. Acta Geologica Sinica (English Edition), 83(6): 1163–1172. CrossRefGoogle Scholar
  11. Hopper, J. R., Buck, W. R., 1996. The Effect of Lower Crustal Flow on Continental Extension and Passive Margin Formation. Journal of Geophysical Research: Solid Earth, 101(B9): 20175–20194. Google Scholar
  12. Hu, J. F., Su, Y. J., Zhu, X. G., et al., 2005. S-Wave Velocity and Poisson’s Ratio Structure of Crust in Yunnan and Its Implication. Science in China (Series D), 48(2): 210–218. CrossRefGoogle Scholar
  13. Hu, J. F., Yang, H. Y., Li, G. Q., et al., 2013. Seismic Signature of the Mantle Transition Zone beneath Eastern Tibet and Sichuan Basin. Journal of Asian Earth Sciences, 62: 606–615. CrossRefGoogle Scholar
  14. Hu, J. F., Yang, H. Y., Xu, X. Q., et al., 2012. Lithospheric Structure and Crust-Mantle Decoupling in the Southeast Edge of the Tibetan Plateau. Gondwana Research, 22(3/4): 1060–1067. CrossRefGoogle Scholar
  15. Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 179(2): 407–419. CrossRefGoogle Scholar
  16. Huang, H., Yao, H. J., van der Hilst, R. D., 2010. Radial Anisotropy in the Crust of SE Tibet and SW China from Ambient Noise Interferometry. Geophysical Research Letters, 37(21): L21310. CrossRefGoogle Scholar
  17. Huang, R., Zhu, L. P., Xu, Y. X., 2014. Crustal Structure of Hubei Province of China from Teleseismic Receiver Functions: Evidence for Lower Crust Delamination. Tectonophysics, 636: 286–292. CrossRefGoogle Scholar
  18. Huang, Z. C., Wang, P., Xu, M. J., et al., 2015. Mantle Structure and Dynamics beneath SE Tibet Revealed by New Seismic Images. Earth and Planetary Science Letters, 411: 100–111. CrossRefGoogle Scholar
  19. Kan, R. J., Lin, Z. Y., 1986. A Preliminary Study on Crustal and Upper Mantle Structure in Yunnan. Earthquake Research in China, 2: 50–61 (in Chinese with English Abstract)Google Scholar
  20. Kennett, B. L. N., Engdahl, E. R., 1991. Traveltimes for Global Earthquake Location and Phase Identification. Geophysical Journal International, 105(2): 429–465. CrossRefGoogle Scholar
  21. Langston, C. A., 1979. Structure under Mount Rainier, Washington, Inferred from Teleseismic Body Waves. Journal of Geophysical Research, 84(B9): 4749–4762. CrossRefGoogle Scholar
  22. Lees, J. M., Wu, H. T., 2000. Poisson’s Ratio and Porosity at Coso Geothermal Area, California. Journal of Volcanology and Geothermal Research, 95(1/2/3/4): 157–173. CrossRefGoogle Scholar
  23. Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research, 114(B5): B5302. CrossRefGoogle Scholar
  24. Li, C., van der Hilst, R. D., 2010. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography. Journal of Geophysical Research, 115(B7): B7308. CrossRefGoogle Scholar
  25. Li, C., van der Hilst, R. D., Meltzer, A. S., et al., 2008. Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1/2): 157–168. CrossRefGoogle Scholar
  26. Li, M. K., Zhang, S. X., Wang, F., et al., 2016. Crustal and Upper-Mantle Structure of the Southeastern Tibetan Plateau from Joint Analysis of Surface Wave Dispersion and Receiver Functions. Journal of Asian Earth Sciences, 117: 52–63. CrossRefGoogle Scholar
  27. Li, Y. H., Wu, Q. J., Tian, X. B., et al., 2009. Crustal Structure in the Yunnan Region Determined by Modelling Receiver Functions. Chinese Journal of Geophysics, 52: 67–80 (in Chinese with English Abstract)Google Scholar
  28. Ligorría, J. P., Ammon, C. J., 1999. Iterative Deconvolution and Receiver-Function Estimation. Bulletin of the Seismological Society of America, 89(5): 1395–1400Google Scholar
  29. Lombardi, D., Braunmiller, J., Kissling, E., et al., 2008. Moho Depth and Poisson’s Ratio in the Western-Central Alps from Receiver Functions. Geophysical Journal International, 173(1): 249–264. CrossRefGoogle Scholar
  30. Lou, H., Wang, C. Y., 2005. Wavelet Analysis and Interpretation of Gravity Data in Sichuan-Yunnan Region, China. Acta Seismologica Sinica, 18(5): 552–561. CrossRefGoogle Scholar
  31. Lü, Y., Zhang, Z. J., Pei, S. P., et al., 2014. 2.5-Dimensional Tomography of Uppermost Mantle beneath Sichuan-Yunnan and Surrounding Regions. Tectonophysics, 627: 193–204. CrossRefGoogle Scholar
  32. Niu, F. L., James, D. E., 2002. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 200(1/2): 121–130. CrossRefGoogle Scholar
  33. Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628): 37–43. CrossRefGoogle Scholar
  34. Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788–790. CrossRefGoogle Scholar
  35. Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058. CrossRefGoogle Scholar
  36. Sanders, C. O., Ponko, S. C., Nixon, L. D., et al., 1995. Seismological Evidence for Magmatic and Hydrothermal Structure in Long Valley Caldera from Local Earthquake Attenuation and Velocity Tomography. Journal of Geophysical Research: Solid Earth, 100(B5): 8311–8326. CrossRefGoogle Scholar
  37. Savage, M. K., 1998. Lower Crustal Anisotropy or Dipping Boundaries?. Effects on Receiver Functions and a Case Study in New Zealand. Journal of Geophysical Research: Solid Earth, 103(B7): 15069–15087. Google Scholar
  38. Shen, Z. K., Lü, J. N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): B11409. CrossRefGoogle Scholar
  39. Shi, Y. T., Gao, Y., Wu, J., et al., 2008. Crustal Seismic Anisotropy in Yunnan, Southwestern China. Journal of Seismology, 13(2): 287–299. CrossRefGoogle Scholar
  40. Silver, P. G., Chan, W. W., 1991. Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, 96(B10): 16429–16454. CrossRefGoogle Scholar
  41. Sol, S., Meltzer, A., Bürgmann, R., et al., 2007. Geodynamics of the Southeastern Tibetan Plateau from Seismic Anisotropy and Geodesy. Geology, 35(6): 563–566. CrossRefGoogle Scholar
  42. Sun, Y., Niu, F. L., Liu, H. F., et al., 2012. Crustal Structure and Deformation of the SE Tibetan Plateau Revealed by Receiver Function Data. Earth and Planetary Science Letters, 349/350: 186–197. CrossRefGoogle Scholar
  43. Thompson, D. A., Bastow, I. D., Helffrich, G., et al., 2010. Precambrian Crustal Evolution: Seismic Constraints from the Canadian Shield. Earth and Planetary Science Letters, 297(3/4): 655–666. CrossRefGoogle Scholar
  44. Tkalčić, H., Chen, Y. L., Liu, R. F., et al., 2011. Multistep Modelling of Teleseismic Receiver Functions Combined with Constraints from Seismic Tomography: Crustal Structure beneath Southeast China. Geophysical Journal International, 187(1): 303–326. CrossRefGoogle Scholar
  45. Tkalčić, H., Pasyanos, M. E., Rodgers, A. J., et al., 2006. A Multistep Approach for Joint Modeling of Surface Wave Dispersion and Teleseismic Receiver Functions: Implications for Lithospheric Structure of the Arabian Peninsula. Journal of Geophysical Research: Solid Earth, 111(B11): B11311. CrossRefGoogle Scholar
  46. Wang, C. Y., Lou, H., Silver, P. G., et al., 2010. Crustal Structure Variation along 30°N in the Eastern Tibetan Plateau and its Tectonic Implications. Earth and Planetary Science Letters, 289(3/4): 367–376. CrossRefGoogle Scholar
  47. Wang, P., Wang, L. S., Mi, N., et al., 2010. Crustal Thickness and Average VP/VS Ratio Variations in Southwest Yunnan, China, from Teleseismic Receiver Functions. Journal of Geophysical Research, 115(B11): B11308. Google Scholar
  48. Wang, Q. S., Wu, C. Z., Liu, H. C., et al., 1982. Studies on the General Distribution of Crustal Thickness and Characteristics of Crustal Structure under the Asian Continent. Seismology and Geology, 4: 1–9 (in Chinese with English Abstract)Google Scholar
  49. Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176–193. CrossRefGoogle Scholar
  50. Xu, Q., Zhao, J. M., Yuan, X. H., et al., 2015. Mapping Crustal Structure beneath Southern Tibet: Seismic Evidence for Continental Crustal Underthrusting. Gondwana Research, 27(4): 1487–1493. CrossRefGoogle Scholar
  51. Xu, Y., Liu, J. H., Liu, F. T., et al., 2005. Crust and Upper Mantle Structure of the Ailao Shan-Red River Fault Zone and Adjacent Regions. Science in China: Earth Sciences, 48(2): 156–164. CrossRefGoogle Scholar
  52. Xu, Z. J., Song, X. D., Zhu, L. P., 2013. Crustal and Uppermost Mantle S Velocity Structure under Hi-CLIMB Seismic Array in Central Tibetan Plateau from Joint Inversion of Surface Wave Dispersion and Receiver Function Data. Tectonophysics, 584: 209–220. CrossRefGoogle Scholar
  53. Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1): 205–219. CrossRefGoogle Scholar
  54. Yao, H. J., van der Hilst, R. D., Montagner, J. P., 2010. Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography. Journal of Geophysical Research, 115(B12): B12307. Google Scholar
  55. Yeck, W. L., Sheehan, A. F., Schulte-Pelkum, V., 2013. Sequential H-κ Stacking to Obtain Accurate Crustal Thicknesses beneath Sedimentary Basins. Bulletin of the Seismological Society of America, 103(3): 2142–2150. CrossRefGoogle Scholar
  56. Zandt, G., Ammon, C. A., 1995. Continental Crust Composition Constrained by Measurements of Crustal Poisson’s Ratio. Nature, 374(6518): 152–154. CrossRefGoogle Scholar
  57. Zhang, X. M., Hu, J. F., Hu, Y. L., et al., 2011. Structure of S-Wave Velocity in the Crust-Upper Mantle and Tectonic Setting of Strong Earthquakes beneath Yunnan. Chinese Journal of Geophysics, 54(3): 286–298. CrossRefGoogle Scholar
  58. Zhang, X., Wang, Y. H., 2009. Crustal and Upper Mantle Velocity Structure in Yunnan, Southwest China. Tectonophysics, 471(3/4): 171–185. CrossRefGoogle Scholar
  59. Zhang, Z. J., Wang, Y. H., Chen, Y., et al., 2009. Crustal Structure across Longmenshan Fault Belt from Passive Source Seismic Profiling. Geophysical Research Letters, 36(17): L17310. CrossRefGoogle Scholar
  60. Zhu, L. P., 2000. Crustal Structure across the San Andreas Fault, Southern California from Teleseismic Converted Waves. Earth and Planetary Science Letters, 179(1): 183–190. CrossRefGoogle Scholar
  61. Zhu, L. P., Kanamori, H., 2000. Moho Depth Variation in Southern California from Teleseismic Receiver Functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969–2980. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geophysics, School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.Key Laboratory of Geospace Environment and Geodesy of the Ministry of EducationWuhan UniversityWuhanChina
  3. 3.Collaborative Innovation Center of Geospatial TechnologyWuhanChina

Personalised recommendations