Advertisement

Journal of Earth Science

, Volume 29, Issue 6, pp 1409–1418 | Cite as

Distribution of Intra-Crustal Low Velocity Zones beneath Yunnan from Seismic Ambient Noise Tomography

  • Weibing Qin
  • Shuangxi ZhangEmail author
  • Mengkui Li
  • Tengfei Wu
  • Chaoyu Zhang
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Abstract

Previous studies have reached consensus that low velocity zones are widespread in the crust beneath Yunnan region. However, the relationships between the low velocity zones and large faults, earthquake distribution are less investigated by available studies. By analyzing the seismic ambient noise recorded by Yunnan Seismic Networks and Tengchong volcano array, we construct a 3D crustal shear wave velocity model for the Yunnan region, which provides more details of the distribution of intra-crustal low velocity zones in all of Yunnan. The distribution of low velocity zones shows different features at different depths. At shallow depths, the results are well correlated with near surface geological features. With increasing depth, the low velocity zones are gradually concentrated to the northern part of our study area, most likely reflecting variations in crustal thickness beneath the Yunnan region. The low velocity zones are truncated at depth by several large faults in Yunnan. It is interesting that most strong earthquakes (Ms≥5.0) occurred in Yunnan are distributed in low velocity zones or the transition zones between low and high velocity anomalies within the upper-to-middle crust. The crustal structure is composed of a brittle, seismically active upper-to-middle crust and a warm, aseismic lower crust.

Key words

ambient noise tomography crustal structure low velocity zone fault strong earthquake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the editors and two anonymous reviewers for their useful comments. We thank T. B. Yanovskaya of Leningrad State University for providing the 2D tomography software and Robert Herrmann from Saint Louis University for his Computer Programs in Seismology (CPS) software package. We are also grateful to Prof. Huajian Yao, University of Science and Technology of China, Hefei, China, for providing the software package to extract the phase dispersion curves. Figures 1 and 5–8 are constructed using the GMT software (Wessel and Smith, 1998). Seismic data are provided by Yunnan Seismic Networks. This study was financially supported by the National 973-Project (No. 2013CB733303), the National Natural Science Foundation of China (No. 41474093), and the Key Natural Science Foundation of Hubei Province (No. 2014CFA110). The final publication is available at Springer via  https://doi.org/10.1007/s12583-017-0815-8.

References Cited

  1. Backus, G., Gilbert, F., 1968. The Resolving Power of Gross Earth Data. Geophysical Journal International, 16(2): 169–205. https://doi.org/10.1111/j.1365-246x.1968.tb00216.x CrossRefGoogle Scholar
  2. Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3(5): 358–362. https://doi.org/10.1038/ngeo830 CrossRefGoogle Scholar
  3. Bao, X. W., Sun, X. X., Xu, M. J., et al., 2015. Two Crustal Low-Velocity Channels beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Earth and Planetary Science Letters, 415(5): 16–24. https://doi.org/10.13039/501100002858 CrossRefGoogle Scholar
  4. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239–1260. https://doi.org/10.1111/j.1365-246x.2007.03374.x CrossRefGoogle Scholar
  5. Cheng, C., Chen, L., Yao, H. J., et al., 2013. Distinct Variations of Crustal Shear Wave Velocity Structure and Radial Anisotropy beneath the North China Craton and Tectonic Implications. Gondwana Research, 23(1): 25–38. https://doi.org/10.1016/j.gr.2012.02.014 CrossRefGoogle Scholar
  6. Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  7. Fang, L. H., Wu, J. P., Ding, Z. F., et al., 2010. High Resolution Rayleigh Wave Group Velocity Tomography in North China from Ambient Seismic Noise. Geophysical Journal International, 16(2): 1171–1182. https://doi.org/10.1111/j.1365-246x.2010.04571.x Google Scholar
  8. Herrmann, R. B., Ammon, C. J., 2004. Surface Waves, Receiver Functions and Crustal Structure. Computer Programs in Seismology, Version, 3.30. [2018-4-9]. https://doi.org/www.eas.slu.edu/eqc/eqccps.html Google Scholar
  9. He, Z. Q., Ye, T. L., Su, W., 2005. 3-D Velocity Structure of the Middle and Upper Crust in the Yunnan Region, China. Pure and Applied Geophysics, 162(12): 2355–2368. https://doi.org/10.1007/s00024-005-2780-x CrossRefGoogle Scholar
  10. Hu, H. X., Gao, S. Y., 1993. The Investigation of Fine Velocity Structure of the Basement Layer of Earth’s Crust in Western Yunnan Region. Earthquake Research in China, 9(4): 356–363 (in Chinese with English Abstract)Google Scholar
  11. Hu, J. F., Su, Y. J., Zhu, X. G., et al., 2005a. S-Wave Velocity and Poisson’s Ratio Structure of Crust in Yunnan and Its Implication. Science in China Series D: Earth Sciences, 48(2): 210–218. https://doi.org/10.1360/03yd0062 CrossRefGoogle Scholar
  12. Hu, J. F., Zhu, X. G., Xia, J. Y., et al., 2005b. Using Surface Wave and Receiver Function to Jointly Inverse the Crust-Mantle Velocity Structure in the West Yunnan Area. Chinese Journal of Geophysics, 48(5): 1148–1155. https://doi.org/10.1002/cjg2.758 CrossRefGoogle Scholar
  13. Huang, J. L., Zhao, D. P., Zheng, S. H., 2002. Lithospheric Structure and Its Relationship to Seismic and Volcanic Activity in Southwest China. Journal of Geophysical Research: Solid Earth, 107(B10): ESE 13-1–ESE 13–14. https://doi.org/10.1029/2000jb000137
  14. Kan, R. J., Hu, H. X., Zeng, R. S., et al., 1986. Crustal Structure of Yunnan Province, Peopleʼs Republic of China, from Seismic Refraction Profiles. Science, 234(4775): 433–437. https://doi.org/10.1126/science.234.4775.433 CrossRefGoogle Scholar
  15. Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophysical Journal International, 122(1): 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x CrossRefGoogle Scholar
  16. Lei, J. S., Zhao, D. P., Su, Y. J., 2009. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research, 114(B5): B05302. https://doi.org/10.1029/2008jb005881 CrossRefGoogle Scholar
  17. Leloup, P. H., Ricard, Y., Battaglia, J., et al., 1999. Shear Heating in Continental Strike-Slip Shear Zones: Model and Field Examples. Geophysical Journal International, 136(1): 19–40. https://doi.org/10.1046/j.1365-246x.1999.00683.x CrossRefGoogle Scholar
  18. Li, H. Y., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1): 117–123. https://doi.org/10.1007/s12583-011-0162-0 CrossRefGoogle Scholar
  19. Li, H. Y., Su, W., Wang, C. Y., et al., 2009. Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 282(1/2/3/4): 201–211. https://doi.org/10.1016/j.epsl.2009.03.021 CrossRefGoogle Scholar
  20. Li, Y. H., Wu, Q. J., Zhang, R. Q., et al., 2008. The Crust and Upper Mantle Structure beneath Yunnan from Joint Inversion of Receiver Functions and Rayleigh Wave Dispersion Data. Physics of the Earth and Planetary Interiors, 170(1/2): 134–146. https://doi.org/10.1016/j.pepi.2008.08.006 CrossRefGoogle Scholar
  21. Li, Y. H., Wu, Q. J., Tian, X. B., et al., 2009. Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functures. Chinese Journal of Geophysics, 52(1): 67–80 (in Chinese with English Abstract)Google Scholar
  22. Lobkis, O. I., Weaver, R. L., 2001. On the Emergence of the Green’s Function in the Correlations of a Diffuse Field. The Journal of the Acoustical Society of America, 110(6): 3011–3017. https://doi.org/10.1121/1.1417528 CrossRefGoogle Scholar
  23. Moschetti, M. P., Ritzwoller, M. H., Shapiro, N. M., 2007. Surface Wave Tomography of the Western United States from Ambient Seismic Noise: Rayleigh Wave Group Velocity Maps. Geochemistry, Geophysics, Geosystems, 8(8). https://doi.org/10.1029/2007gc001655
  24. Paul, A., Campillo, M., Margerin, L., et al., 2005. Empirical Synthesis of Time-Asymmetrical Green Functions from the Correlation of Coda Waves. Journal of Geophysical Research, 110(B8): B08302. https://doi.org/10.1029/2004jb003521 CrossRefGoogle Scholar
  25. Qin, J. Z., Qian, X. D., Huangfu, G., 1996. The Seismicity Feature of the Volcanic Area in Tengchong. Seismol. Geomagn. Obs. Res., 17: 19–27 (in Chinese with English Abstract)Google Scholar
  26. Ritzwoller, M. H., Levshin, A. L., 1998. Eurasian Surface Wave Tomography: Group Velocities. Journal of Geophysical Research: Solid Earth, 103(B3): 4839–4878. https://doi.org/10.1029/97jb02622 Google Scholar
  27. Roux, P., Sabra, K. G., Kuperman, W. A., et al., 2005. Ambient Noise cross Correlation in Free Space: Theoretical Approach. The Journal of the Acoustical Society of America, 117(1): 79–84. https://doi.org/10.1121/1.1830673 CrossRefGoogle Scholar
  28. Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788–790. https://doi.org/10.1126/science.276.5313.788 CrossRefGoogle Scholar
  29. Royden, L. H., Burchfiel, B. C., van der Hilst, R. D., 2008. The Geological Evolution of the Tibetan Plateau. Science, 321(5892): 1054–1058. https://doi.org/10.1126/science.1155371 CrossRefGoogle Scholar
  30. Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005a. Extracting Time-Domain Greenʼs Function Estimates from Ambient Seismic Noise. Geophysical Research Letters, 32(3): L03310. https://doi.org/10.1029/2004gl021862 CrossRefGoogle Scholar
  31. Sabra, K. G., Gerstoft, P., Roux, P., et al., 2005b. Surface Wave Tomography from Microseisms in Southern California. Geophysical Research Letters, 32(14): L14311. https://doi.org/10.1029/2005gl023155 CrossRefGoogle Scholar
  32. Schärer, U., Zhang, L. S., Tapponnier, P., 1994. Duration of Strike-Slip Movements in Large Shear Zones: The Red River Belt, China. Earth and Planetary Science Letters, 126(4): 379–397. https://doi.org/10.1016/0012-821x(94)90119-8 CrossRefGoogle Scholar
  33. Snieder, R., 2004. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 69(4): 046610. https://doi.org/10.1103/physreve.69.046610 CrossRefGoogle Scholar
  34. Wang, C. Y., Chan, W. W., Mooney, W. D., 2003. Three-Dimensional Velocity Structure of Crust and Upper Mantle in Southwestern China and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 108(B9): 2442. https://doi.org/10.1029/2002jb001973 CrossRefGoogle Scholar
  35. Wang, C. Y., Huangfu, G., 2004. Crustal Structure in Tengchong Volcano-Geothermal Area, Western Yunnan, China. Tectonophysics, 380(1/2): 69–87. https://doi.org/10.1016/j.tecto.2003.12.001 CrossRefGoogle Scholar
  36. Wang, Q., Gao, Y., 2014. Rayleigh Wave Phase Velocity Tomography and Strong Earthquake Activity on the Southeastern Front of the Tibetan Plateau. Science China Earth Sciences, 57(10): 2532–2542. https://doi.org/10.1007/s11430-014-4908-2 CrossRefGoogle Scholar
  37. Wang, Y., 2001. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland: Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 126(3/4): 121–146. https://doi.org/10.1016/s0031-9201(01)00251-5 CrossRefGoogle Scholar
  38. Wei, W., Sun, R. M., Shi, Y. L., 2010. P-Wave Tomographic Images beneath Southeastern Tibet: Investigating the Mechanism of the 2008 Wenchuan Earthquake. Science China Earth Sciences, 53(9): 1252–1259. https://doi.org/10.1007/s11430-010-4037-5 CrossRefGoogle Scholar
  39. Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. EOS, Transactions American Geophysical Union, 79(47): 579–579. https://doi.org/10.1029/98eo00426 CrossRefGoogle Scholar
  40. Wu, J. P., Ming, Y. H., 2001. The S Wave Velocity Structure beneath Digital Seismic Stations of Yunnan Province Inferred from Teleseismic Receiver Function Modeling. Chinese Journal of Geophysics, 44(2): 228–237 (in Chinese with English Abstract)CrossRefGoogle Scholar
  41. Xu, L. L., Rondenay, S., van der Hilst, R. D., 2007. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 165(3/4): 176–193. https://doi.org/10.1016/j.pepi.2007.09.002 CrossRefGoogle Scholar
  42. Xu, X. M., Li, H. Y., Gong, M., et al., 2011. Three-Dimensional S-Wave Velocity Structure in Eastern Tibet from Ambient Noise Rayleigh and Love Wave Tomography. Journal of Earth Science, 22(2): 195–204. https://doi.org/10.1007/s12583-011-0172-y CrossRefGoogle Scholar
  43. Xu, Y., Yang, X. T., Liu, J. H., 2013. Tomographic Study of Crustal Velocity Structures in the Yunnan Region Southwest China. Chinese Journal of Geophysics, 56(6): 1904–1914 (in Chinese with English Abstract). https://doi.org/10.6038/cjg20130613 Google Scholar
  44. Yang, Y. J., Li, A. B., Ritzwoller, M. H., 2008. Crustal and Uppermost Mantle Structure in Southern Africa Revealed from Ambient Noise and Teleseismic Tomography. Geophysical Journal International, 174(1): 235–248. https://doi.org/10.1111/j.1365-246x.2008.03779.x CrossRefGoogle Scholar
  45. Yanovskaya, T. B., Ditmar, P. G., 1990. Smoothness Criteria in Surface Wave Tomography. Geophysical Journal International, 102(1): 63–72. https://doi.org/10.1111/j.1365-246x.1990.tb00530.x CrossRefGoogle Scholar
  46. Yanovskaya, T. B., Kizima, E. S., Antonova, L. M., 1998. Structure of the Crust in the Black Sea and Adjoining Regions from Surface Wave Data. Journal of Seismology, 2(4): 303–316. https://doi.org/10.1023/A:1009716017960 CrossRefGoogle Scholar
  47. Yao, H. J., Beghein, C., van der Hilst, R. D., 2008. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 173(1): 205–219. https://doi.org/10.1111/j.1365-246x.2007.03696.x CrossRefGoogle Scholar
  48. Yao, H. J., van der Hilst, R. D., de Hoop, M. V., 2006. Surface-Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-I. Phase Velocity Maps. Geophysical Journal International, 166(2): 732–744. https://doi.org/10.1111/j.1365-246x.2006.03028.x CrossRefGoogle Scholar
  49. Yao, H. J., van der Hilst, R. D., Montagner, J. P., 2010. Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography. Journal of Geophysical Research, 115(B12): B12307. https://doi.org/10.1029/2009jb007142 CrossRefGoogle Scholar
  50. Yao, H. J., Xu, G. M., Zhu, L. B., et al., 2005. Mantle Structure from Inter-Station Rayleigh Wave Dispersion and its Tectonic Implication in Western China and Neighboring Regions. Physics of the Earth and Planetary Interiors, 148(1): 39–54. https://doi.org/10.1016/j.pepi.2004.08.006 CrossRefGoogle Scholar
  51. Zhang, X., Wang, Y. H., 2009. Crustal and Upper Mantle Velocity Structure in Yunnan, Southwest China. Tectonophysics, 471(3/4): 171–185. https://doi.org/10.1016/j.tecto.2009.02.009 CrossRefGoogle Scholar
  52. Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005a. Crustal Structure of Gondwana-and Yangtze-Typed Blocks: An Example by Wide-Angle Seismic Profile from Menglian to Malong in Western Yunnan. Science in China Series D: Earth Sciences, 48(11): 1828–1836. https://doi.org/10.1360/03yd0547 CrossRefGoogle Scholar
  53. Zhang, Z. J., Bai, Z. M., Wang, C. Y., et al., 2005b. The Crustal Structure under Sanjiang and Its Dynamic Implications: Revealed by Seismic Reflection/Refraction Profile between Zhefang and Binchuan, Yunnan. Science in China Series D: Earth Sciences, 48(9): 1329–1336. https://doi.org/10.1360/01yd0567 CrossRefGoogle Scholar
  54. Zhao, D. P., Ochi, F., Hasegawa, A., et al., 2000. Evidence for the Location and Cause of Large Crustal Earthquakes in Japan. Journal of Geophysical Research: Solid Earth, 105(B6): 13579–13594. https://doi.org/10.1029/2000jb900026 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geophysics, School of Geodesy and GeomaticsWuhan UniversityWuhanChina
  2. 2.China Three Gorges CorporationYichangChina
  3. 3.Key Laboratory of Geospace Environment and Geodesy of Ministry of EducationWuhan UniversityWuhanChina
  4. 4.Collaborative Innovation Center of Geospace Information ScienceWuhan UniversityWuhanChina

Personalised recommendations