Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits

  • Teodolina Lopez
  • Raphaël Antoine
  • José Darrozes
  • Michel Rabinowicz
  • David Baratoux
Article

Abstract

In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems (PFS). PFS can increase the vertical permeability of clay-rich deposits (mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometres large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances at most equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks result from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that (1) centimetric to kilometric PFS result from the dramatic increase of L during compaction and (2), this process involve agglomerates with 100 μm to 1 mm size.

Keywords

compaction clay deposit agglomerates polygonal fractures desiccation cracks. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research has benefited from the support by the French Space Agency CNES, PNP (Programme National de Planétologie) and TOSCA (Terre, Océan, Surfaces continentales, Atmosphère). It has also benefited from the support of Commis sariat Général au Développement Durable (CGDD) from the French Ministry of Environment, as part of the CEREMA internal research project HYDROGEO. We thank two anonymous reviewers for their constructive criticisms which significantly improved the paper. We also want to thank David A. Yuen for his support and scientific discussions. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0814-9.

References

  1. Alba-Simionesco, C., Coasne, B., Dosseh, G., et al., 2006. Effects of Confinement on Freezing and Melting. Journal of Physics: Condensed Matter, 18(6): R15–R68. https://doi.org/10.1088/0953-8984/18/6/r01Google Scholar
  2. Alsharhan, A. S., Kendall, C. G. S. C., 2003. Holocene Coastal Carbonates and Evaporites of the Southern Arabian Gulf and their Ancient Analogues. Earth-Science Reviews, 61(3/4): 191–243. https://doi.org/10.1016/s0012-8252(02)00110-1Google Scholar
  3. Andresen, K. J., Huuse, M., 2011. ‘Bulls-Eye’ Pockmarks and Polygonal Faulting in the Lower Congo Basin: Relative Timing and Implications for Fluid Expulsion during Shallow Burial. Marine Geology, 279(1/2/3/4): 111–127. https://doi.org/10.1016/j.margeo.2010.10.016Google Scholar
  4. Baer, J. U., Kent, T. F., Anderson, S. H., 2009. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks. Geoderma, 154(1/2): 153–163. https://doi.org/10.1016/j.geoderma.2009.10.008Google Scholar
  5. Bercovici, D., Ricard, Y., Schubert, G., 2001. A Two-Phase Model for Compaction and Damage: 1. General Theory. Journal of Geophysical Research: Solid Earth, 106(B5): 8887–8906. https://doi.org/10.1029/2000jb900430Google Scholar
  6. Bernaud, D., Dormieux, L., Maghous, S., 2006. A Constitutive and Numerical Model for Mechanical Compaction in Sedimentary Basins. Computers and Geotechnics, 33(6/7): 316–329. https://doi.org/10.1016/j.compgeo.2006.05.004Google Scholar
  7. Bishop, A. W., Green, G. E., Garga, V. K., et al., 1971. A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength. Géotechnique, 21(4): 273–328. https://doi.org/10.1680/geot.1971.21.4.273Google Scholar
  8. Brinker, C. J., Schere, G. W., 1990. Sol-Gel Science: The Physic and Chemistry of Gel Processing. Academic Press, San DiegoGoogle Scholar
  9. Buessem, W. R., Nagy, B., 1954. The Mechanism of the Deformation of Clay. Clays and Clay Minerals, 2(1): 480–491. https://doi.org/10.1346/ccmn.1953.0020138Google Scholar
  10. Carman, P. C., 1961. L’écoulement des Gaz à Travers les Milieux Poreux. Press Univ. de Fr., ParisGoogle Scholar
  11. Cartwright, J. A., 1994. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 11(5): 587–607. https://doi.org/10.1016/0264-8172(94)90070-1Google Scholar
  12. Cartwright, J. A., Lonergan, L., 1996. Volumetric Contraction during the Compaction of Mudrocks: A Mechanism for the Development of Regional-Scale Polygonal Fault Systems. Basin Research, 8(2): 183–193. https://doi.org/10.1046/j.1365-2117.1996.01536.xGoogle Scholar
  13. Cartwright, J. A., Dewhurst, D. N., 1998. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 110(10): 1242–1257. https://doi.org/10.1130/0016-7606(1998)110<1242:lbcfif>2.3.co;2Google Scholar
  14. Cartwright, J., James, D., Bolton, A., 2003. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 216(1): 223–243. https://doi.org/10.1144/gsl.sp.2003.216.01.15Google Scholar
  15. Casagrande, A., 1932. The Structure of Clay and Its Importance in the Foundation Engineering. J. Boston Soc. Civil Eng., 19: 168Google Scholar
  16. Christidis, G. E., Dellisanti, F., Valdre, G., et al., 2005. Structural Modifications of Smectites Mechanically Deformed under Controlled Conditions. Clay Minerals, 40(4): 511–522. https://doi.org/10.1180/0009855054040188Google Scholar
  17. Connolly, J. A. D., Podladchikov, Y. Y., 2000. Temperature-Dependent Viscoelastic Compaction and Compartmentalization in Sedimentary Basins. Tectonophysics, 324(3): 137–168. https://doi.org/10.1016/s0040-1951(00)00084-6Google Scholar
  18. Connolly, J. A. D., Podladchikov, Y. Y., 2013. A Hydromechanical Model for Lower Crustal Fluid Flow. In: Metasomatism and the Chemical Transformation of Rock. Springer Berlin Heidelberg, Berlin, Heidelberg. 599–658Google Scholar
  19. Connolly, J. A. D., Podladchikov, Y. Y., 2014. An Analytical Solution for Solitary Porosity Waves: Dynamic Permeability and Fluidization of Nonlinear Viscous and Viscoplastic Rock. Geofluids, 15(1/2): 269–292. https://doi.org/10.1111/gfl.12110Google Scholar
  20. Davies, R., Cartwright, J., Rana, J., 1999. Giant Hummocks in Deep-Water Marine Sediments: Evidence for Large-Scale Differential Compaction and Density Inversion during Early Burial. Geology, 27(10): 907. https://doi.org/10.1130/0091-7613(1999)027<0907:ghidwm>2.3.co;2Google Scholar
  21. Davies, R. J., Ireland, M. T., Cartwright, J. A., 2009. Differential Compaction due to the Irregular Topology of a Diagenetic Reaction Boundary: A New Mechanism for the Formation of Polygonal Faults. Basin Research, 21(3): 354–359. https://doi.org/10.1111/j.1365-2117.2008.00389.xGoogle Scholar
  22. Davies, R. J., Ireland, M. T., 2011. Initiation and Propagation of Polygonal Fault Arrays by Thermally Triggered Volume Reduction Reactions in Siliceous Sediment. Marine Geology, 289(1/2/3/4): 150–158. https://doi.org/10.1016/j.margeo.2011.05.005Google Scholar
  23. Dewhurst, D. N., Cartwright, J. A., Lonergan, L., 1999. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 16(8): 793–810. https://doi.org/10.1016/s0264-8172(99)00035-5 DeGoogle Scholar
  24. Paola, N., Collettini, C., Trippetta, F., et al., 2007. A Mechanical Model for Complex Fault Patterns Induced by Evaporite Dehydration and Cyclic Changes in Fluid Pressure. Journal of Structural Geology, 29(10): 1573–1584. https://doi.org/10.1016/j.jsg.2007.07.015Google Scholar
  25. Engelhardt, W. V., Gaida, K. H., 1963. Concentration Changes of Pore Solutions during Compaction of Clay Sediments. Journal of Sedimentary Research, 33(4): 919–930. https://doi.org/10.1306/74d70f74-2b21-11d7-8648000102c1865dGoogle Scholar
  26. Fowler, A. C., 1984. On the Transport of Moisture in Polythermal Glaciers. Geophysical & Astrophysical Fluid Dynamics, 28(2): 99–140. https://doi.org/10.1080/03091928408222846Google Scholar
  27. Gardien, V., Rabinowicz, M., Vigneresse, J. L., et al., 2016. Long-Lived Interaction between Hydrothermal and Magmatic Fluids in the Soultz-Sous-Forêts Granitic System (Rhine Graben, France). Lithos, 246/247: 110–127. https://doi.org/10.1016/j.lithos.2015.12.002Google Scholar
  28. Gay, A., Lopez, M., Cochonat, P., et al., 2004. Polygonal Faults-Furrows System Related to Early Stages of Compaction—Upper Miocene to Recent Sediments of the Lower Congo Basin. Basin Research, 16(1): 101–116. https://doi.org/10.1111/j.1365-2117.2003.00224.xGoogle Scholar
  29. Goulty, N. R., 2001. Polygonal Fault Networks in Fine-Grained Sediments—An Alternative to the Syneresis Mechanism. First Break, 19(2): 69–73. https://doi.org/10.1046/j.1365-2397.2001.00137.xGoogle Scholar
  30. Goulty, N. R., 2002. Mechanics of Layer-Bound Polygonal Faulting in Fine-Grained Sediments. Journal of the Geological Society, 159(3): 239–246. https://doi.org/10.1144/0016-764901-111Google Scholar
  31. Goulty, N. R., 2008. Geomechanics of Polygonal Fault Systems: A Review. Petroleum Geoscience, 14(4): 389–397. https://doi.org/10.1144/1354-079308-781Google Scholar
  32. Grégoire, M., Rabinowicz, M., Janse, A. J. A., 2006. Mantle Mush Compaction: A Key to Understand the Mechanisms of Concentration of Kimberlite Melts and Initiation of Swarms of Kimberlite Dykes. Journal of Petrology, 47(3): 631–646. https://doi.org/10.1093/petrology/egi090Google Scholar
  33. Haberlah, D., McTainsh, G. H., 2011. Quantifying Particle Aggregation in Sediments. Sedimentology, 58(5): 1208–1216. https://doi.org/10.1111/j.1365-3091.2010.01201.xGoogle Scholar
  34. Hamaker, H. C., 1937. The London—van Der Waals Attraction between Spherical Particles. Physica, 4(10): 1058–1072. https://doi.org/10.1016/s0031-8914(37)80203-7Google Scholar
  35. Hansen, D. M., Shimeld, J. W., Williamson, M. A., et al., 2004. Development of a Major Polygonal Fault System in Upper Cretaceous Chalk and Cenozoic Mudrocks of the Sable Subbasin, Canadian Atlantic Margin. Marine and Petroleum Geology, 21(9): 1205–1219. https://doi.org/10.1016/j.marpetgeo.2004.07.004Google Scholar
  36. Harris, R. C., 2004. Giant Desiccation Cracks in Arizona. Arizona Geological Survey, Arizona. Open-File Report 04-01. 1–93Google Scholar
  37. Henriet, J., De Batist, M., Van Vaerenbergh, W., et al., 1991. Seismic Facies and Clay Tectonic Features of the Ypresian Clay in the Southern North Sea. In: Proc. of the ‘Intern. Symposium on the Ypresian Stage’. Bull. Belg. Ver. Geol., 97(3/4): 457–472Google Scholar
  38. Hibsch, C., Cartwright, J., Hansen, D. M., et al., 2003. Normal Faulting in Chalk: Tectonic Stresses vs. Compaction-related polygonal faulting. In: Van Rensbergen, P., Hillis, R. R., Maltman, A. J., et al., eds., Subsurface Sediment Mobilization. Geol. Soc. Spec. Publ., 216: 291–308Google Scholar
  39. Higgs, W. G., McClay, K. R., 1993. Analogue Sandbox Modelling of Miocene Extensional Faulting in the Outer Moray Firth. Geological Society, London, Special Publications, 71(1): 141–162. https://doi.org/10.1144/gsl.sp.1993.071.01.07Google Scholar
  40. Holdich, R. G., 2002. Fundamental of Particle Technology. Chap. 13 Colloïds and Agglomeration. Midland Information Technology and Publishing, Shepshed, LeicestershireGoogle Scholar
  41. Hooker, M. L., Herron, G. M., Penas, P., 1982. Effects of Residue Burning, Removal, and Incorporation on Irrigated Cereal Crop Yields and Soil Chemical Properties1. Soil Science Society of America Journal, 46(1): 122. https://doi.org/10.2136/sssaj1982.03615995004600010023xGoogle Scholar
  42. Hustoft, S., Mienert, J., Bünz, S., et al., 2007. High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 245(1/2/3/4): 89–106. https://doi.org/10.1016/j.margeo.2007.07.004Google Scholar
  43. Kaila, A., 1952. Observations on the Effect of Nitrogen and Phosphorus upon the Humification of Straw. Acta Agralia Fennica, 78(2): 1–27Google Scholar
  44. Karig, D. E., Hou, G., 1992. High-Stress Consolidation Experiments and Their Geologic Implications. Journal of Geophysical Research, 97(B1): 289. https://doi.org/10.1029/91jb02247Google Scholar
  45. Kocurek, G., Hunter, R. E. 1986. Origin of Polygonal Fractures in Sand, Uppermost Navajo and Page Sandstones, Page, Arizona. SEPM Journal of Sedimentary Research, 56(6): 895–904. https://doi.org/10.1306/212f8a7b-2b24-11d7-8648000102c1865dGoogle Scholar
  46. Kopf, A., Behrmann, J. H., 2000. Extrusion Dynamics of Mud Volcanoes on the Mediterranean Ridge Accretionary Complex. In: Vendeville, B., Mart, Y., Vigneresse, J.-L., eds., From the Arctic to the Mediterranean: Salt, Shale, and Igneous Diapirs in and Around Europe. Geol. Soc. Spec. Publ., 174: 169–204Google Scholar
  47. Kopf, A. J., 2002. Significance of Mud Volcanism. Reviews of Geophysics, 40(2). https://doi.org/10.1029/2000rg000093Google Scholar
  48. Kopf, A. J., Clennell, M. B., Brown, K. M., 2005. Physical Properties of Muds Extruded from Mud Volcanoes: Implications for Episodicity of Eruptions and Relationship to Seismicity. In: Martinelli, G., Panahi, B., eds., Mud Volcanoes, Geodynamics and Seismicity. 263–283Google Scholar
  49. Lee-Desautel, R., 2005. Theory of van der Waals Forces as Applied to Particlate Materials. Educ. Reso. for Part. Techn.Google Scholar
  50. Li, H. P., Zhu, Y. L., Zhang, J. B., et al., 2004. Effects of Temperature, Strain Rate and Dry Density on Compressive Strength of Saturated Frozen Clay. Cold Regions Science and Technology, 39(1): 39–45. https://doi.org/10.1016/j.coldregions.2004.01.001Google Scholar
  51. Li, J. H., Zhang, L. M., 2011. Study of Desiccation Crack Initiation and Development at Ground Surface. Engineering Geology, 123(4): 347–358. https://doi.org/10.1016/j.enggeo.2011.09.015Google Scholar
  52. Li, X. J., Wang, P. X., Xu, C. Z., et al., 2008. Clay Minerals Distribution in Surface Sediments in Western South China Sea and Provenance. Marine Geol. Quatern. Geol., 28: 9–16 (in Chinese with English Abstract)Google Scholar
  53. Lifshitz, E. M., 1956. The Theory of Molecular Attractive Force Between Solids. Soviet Physics, 2(1): 73Google Scholar
  54. Lonergan, L., Cartwright, J., Jolly, R., 1998. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 20(5): 529–548. https://doi.org/10.1016/s0191-8141(97)00113-2Google Scholar
  55. Lowenstein, T. K., Hardie, L. A., 1985. Criteria for the Recognition of Salt-Pan Evaporites. Sedimentology, 32(5): 627–644. https://doi.org/10.1111/j.1365-3091.1985.tb00478.xGoogle Scholar
  56. Luo, X. R., Vasseur, G., 2002. Natural Hydraulic Cracking: Numerical Model and Sensitivity Study. Earth and Planetary Science Letters, 201(2): 431–446. https://doi.org/10.1016/s0012-821x(02)00711-2Google Scholar
  57. Lynch, J. M., Elliott, L. F., 1983. Aggregate Stabilization of Volcanic Ash and Soil during Microbial Degradation of Straw. Appl. Environ. Microbiol., 45(4): 1398–1401Google Scholar
  58. Mangold, N., Allemand, P., Duval, P., et al., 2002. Experimental and Theoretical Deformation of Ice-Rock Mixtures: Implications on Rheology and Ice Content of Martian Permafrost. Planetary and Space Science, 50(4): 385–401. https://doi.org/10.1016/s0032-0633(02)00005-3Google Scholar
  59. Martin, J. P., 1942. The Effect of Composts and Compost Materials Upon the Aggregation of the Silt and Clay Particles of Collington Sandy Loam. Soil Science Society of America Journal, 7: 218–222. https://doi.org/10.2136/sssaj1943.036159950007000c0033xGoogle Scholar
  60. McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 25(3): 713–765. https://doi.org/10.1093/petrology/25.3.713Google Scholar
  61. McGeary, R. K., 1961. Mechanical Packing of Spherical Particles. Journal of the American Ceramic Society, 44(10): 513–522. https://doi.org/10.1111/j.1151-2916.1961.tb13716.xGoogle Scholar
  62. Mondol, N. H., Bjørlykke, K., Jahren, J., et al., 2007. Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 24(5): 289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006Google Scholar
  63. Moses, G. G., Rao, S. N., Rao, P. N., 2003. Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading. Ocean Engineering, 30(14): 1765–1789. https://doi.org/10.1016/s0029-8018(03)00018-0Google Scholar
  64. Murray, H. H., 1991. Overview—Clay Mineral Applications. Applied Clay Science, 5(5/6): 379–395. https://doi.org/10.1016/0169-1317(91)90014-zGoogle Scholar
  65. Neal, J. T., Langer, A. M., Kerr, P. F., 1968. Giant Desiccation Polygons of Great Basin Playas. Geological Society of America Bulletin, 79(1): 69. https://doi.org/10.1130/0016-7606(1968)79[69:gdpogb]2.0.co;2Google Scholar
  66. Neumann, M. G., Gessner, F., Schmitt, C. C., et al., 2002. Influence of theLayer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension. Journal of Colloid and Interface Science, 255(2): 254–259. https://doi.org/10.1006/jcis.2002.8654Google Scholar
  67. Okamoto, A., Shimizu, H., 2015. Contrasting Fracture Patterns Induced by Volume-Increasing and-Decreasing Reactions: Implications for the Progress of Metamorphic Reactions. Earth and Planetary Science Letters, 417: 9–18. https://doi.org/10.13039/501100001700Google Scholar
  68. Osipov, V. I., 1975. Structural Bonds and the Properties of Clays. Bulletin of the International Association of Engineering Geology, 12(1): 13–2 doi: 10.1007/BF02635423Google Scholar
  69. Osipov, V. I., Sokolov, V. N., 1978. Relation between the Microfabric of Clay Soils and Their Origin and Degree of Compaction. Bulletin of the International Association of Engineering Geology, 18(1): 73–81. https://doi.org/10.1007/bf02635351Google Scholar
  70. Pansu, M., Gautheyrou, J., 2006. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer-Verlag Berlin Heidelberg, New YorkGoogle Scholar
  71. Paszkowski, M., 2013. Some Aspects of Grease Flow in Lubrication Systems and Friction Nodes, Tribology—Fundamentals and Advancements. (2013-5-22) [2018-4-8]. https://mts.intechopen.com/books/tribology-fundamentals-andadvancements/some-aspects-of-grease-flow-in-lubrication-systems-andfriction-nodesGoogle Scholar
  72. Pratt, B. R., 1998. Syneresis Cracks: Subaqueous Shrinkage in Argillaceous Sediments Caused by Earthquake-Induced Dewatering. Sedimentary Geology, 117(1/2): 1–10. https://doi.org/10.1016/s0037-0738(98)00023-2Google Scholar
  73. Quaicoe, I., Nosrati, A., Skinner, W., et al., 2013. Agglomeration Behaviour and Product Structure of Clay and Oxide Minerals. Chemical Engineering Science, 98: 40–50. https://doi.org/10.1016/j.ces.2013.03.034Google Scholar
  74. Rabinowicz, M., Genthon, P., Ceuleneer, G., et al., 2001. Compaction in a Mantle Mush with High Melt Concentrations and the Generation of Magma Chambers. Earth and Planetary Science Letters, 188(3/4): 313–328. https://doi.org/10.1016/s0012-821x(01)00330-2Google Scholar
  75. Rabinowicz, M., Ricard, Y., Grégoire, M., 2002. Compaction in a Mantle with a very Small Melt Concentration: Implications for the Generation of Carbonatitic and Carbonate-Bearing High Alkaline Mafic Melt Impregnations. Earth and Planetary Science Letters, 203(1): 205–220. https://doi.org/10.1016/s0012-821x(02)00836-1Google Scholar
  76. Rabinowicz, M., Vigneresse, J. L., 2004. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research: Solid Earth, 109(B4). https://doi.org/10.1029/2002jb002372Google Scholar
  77. Rabinowicz, M., Ceuleneer, G., 2005. The Effect of Sloped Isotherms on Melt Migration in the Shallow Mantle: A Physical and Numerical Model Based on Observations in the Oman Ophiolite. Earth and Planetary Science Letters, 229(3/4): 231–246. https://doi.org/10.1016/j.epsl.2004.09.039Google Scholar
  78. Rabinowicz, M., Toplis, M. J., 2009. Melt Segregation in the Lower Part of the Partially Molten Mantle Zone beneath an Oceanic Spreading Centre: Numerical Modelling of the Combined Effects of Shear Segregation and Compaction. Journal of Petrology, 50(6): 1071–1106. https://doi.org/10.1093/petrology/egp033Google Scholar
  79. Rabinowicz, M., Bystricky, M., Schmocker, M., et al., 2010. Development of Fluid Veins during Deformation of Fluid-Rich Rocks Close to the Brittle-Ductile Transition: Comparison between Experimental and Physical Models. Journal of Petrology, 51(10): 2047–2066. https://doi.org/10.1093/petrology/egq047Google Scholar
  80. Rasmussen, P. E., Allmaras, R. R., Rohde, C. R., et al., 1980. Crop Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System1. Soil Science Society of America Journal, 44(3): 596. https://doi.org/10.2136/sssaj1980.03615995004400030033xGoogle Scholar
  81. Räss, L., Yarushina, V. M., Simon, N. S. C., et al., 2014. Chimneys, Channels, Pathway Flow or Water Conducting Features—An Explanation from Numerical Modelling and Implications for CO2 Storage. Energy Procedia, 63: 3761–3774. https://doi.org/10.1016/j.egypro.2014.11.405Google Scholar
  82. Rayhani, M. H. T., Yanful, E. K., Fakher, A., 2008. Physical Modeling of Desiccation Cracking in Plastic Soils. Engineering Geology, 97(1/2): 25–31. https://doi.org/10.1016/j.enggeo.2007.11.003Google Scholar
  83. Rayhani, M. H., Yanful, E. K., Fakher, A., 2007. Desiccation-Induced Cracking and Its Effect on the Hydraulic Conductivity of Clayey Soils from Iran. Canadian Geotechnical Journal, 44(3): 276–283. https://doi.org/10.1139/t06-125Google Scholar
  84. Ribe, N. M., 1985. The Deformation and Compaction of Partial Molten Zones. Geophysical Journal International, 83(2): 487–501. https://doi.org/10.1111/j.1365-246x.1985.tb06499.xGoogle Scholar
  85. Roscoe, R., 1952. The Viscosity of Suspensions of Rigid Spheres. British Journal of Applied Physics, 3(8): 267–269. https://doi.org/10.1088/0508-3443/3/8/306Google Scholar
  86. Rutter, E. H., Wanten, P. H., 2000. Experimental Study of the Compaction of Phyllosilicate-Bearing Sand at Elevated Temperature and with Controlled Pore Water Pressure. Journal of Sedimentary Research, 70(1): 107–116. https://doi.org/10.1306/2dc40902-0e47-11d7-8643000102c1865dGoogle Scholar
  87. Rutter, E. H., Arkwright, J. C., Holloway, R. F., et al., 2003. Strains and Displacements in the Mam Tor Landslip, Derbyshire, England. Journal of the Geological Society, 160(5): 735–744. https://doi.org/10.1144/0016-764903-002Google Scholar
  88. Rutter, E. H., Green, S., 2011. Quantifying Creep Behaviour of Clay-Bearing Rocks below the Critical Stress State for Rapid Failure: Mam Tor Landslide, Derbyshire, England. Journal of the Geological Society, 168(2): 359–372. https://doi.org/10.1144/0016-76492010-133Google Scholar
  89. Schneider, F., Potdevin, J. L., Wolf, S., et al., 1996. Mechanical and Chemical Compaction Model for Sedimentary Basin Simulators. Tectonophysics, 263(1/2/3/4): 307–317. https://doi.org/10.1016/s0040-1951(96)00027-3Google Scholar
  90. Schwinka, V., Moertel, H., 1999. Physico-Chemical Properties of Illite Suspensions after Cycles of Freezing and Thawing. Clays and Clay Minerals, 47(6): 718–725. https://doi.org/10.1346/ccmn.1999.0470605Google Scholar
  91. Skempton, A. W., 1964. Long-Term Stability of Clay Slopes. Géotechnique, 14(2): 77–102. https://doi.org/10.1680/geot.1964.14.2.77Google Scholar
  92. Sergeyev, Y. M., Grabowska-Olszewska, B., Osipov, V. I., et al., 1980. The Classification of Microstructures of Clay Soils. Journal of Microscopy, 120(3): 237–260. https://doi.org/10.1111/j.1365-2818.1980.tb04146.xGoogle Scholar
  93. Ślizowski, J., Lankof, L., 2003. Salt-Mudstones and Rock-Salt Suitabilities for Radioactive-Waste Storage Systems: Rheological Properties. Applied Energy, 75(1/2): 137–144. https://doi.org/10.1016/s0306-2619(03)00026-6 So, B.-D.Google Scholar
  94. Yuen, D. A., 2014. Stationary Points in Activation Energy for Heat Dissipated with a Power Law Temperature-Dependent Viscoelastoplastic Rheology. Geophysical Research Letters, 41(14): 4953–4960. https://doi.org/10.1002/2014gl060713Google Scholar
  95. Stuevold, L. M., Faerseth, R. B., Arnesen, L., et al., 2003. Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 216(1): 263–281. https://doi.org/10.1144/gsl.sp.2003.216.01.17Google Scholar
  96. Suetnova, E., Vasseur, G., 2000. 1-D Modelling Rock Compaction in Sedimentary Basins Using a Visco-Elastic Rheology. Earth and Planetary Science Letters, 178(3/4): 373–383. https://doi.org/10.1016/s0012-821x(00)00074-1Google Scholar
  97. Sweet, D. E., Soreghan, G. S., 2008. Polygonal Cracking in Coarse Clastics Records Cold Temperatures in the Equatorial Fountain Formation (Pennsylvanian–Permian, Colorado). Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3/4): 193–204. https://doi.org/10.1016/j.palaeo.2008.03.046Google Scholar
  98. Sun, Q. L., Wu, S. G., Yao, G. S., et al., 2009. Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 20(1): 180–192. https://doi.org/10.1007/s12583-009-0018-zGoogle Scholar
  99. Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470–479. https://doi.org/10.1016/j.jseaes.2010.04.002Google Scholar
  100. Talbot, C. J., Rönnlund, P., Schmeling, H., et al., 1991. Diapiric Spoke Patterns. Tectonophysics, 188(1/2): 187–201. https://doi.org/10.1016/0040-1951(91)90322-jGoogle Scholar
  101. Tang, C.-S., Cui, Y.-J., Tang, A.-M., et al., 2010. Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Engineering Geology, 114(3/4): 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003Google Scholar
  102. Tang, C.-S., Shi, B., Liu, C., et al., 2011. Experimental Characterization of Shrinkage and Desiccation Cracking in Thin Clay Layer. Applied Clay Science, 52(1/2): 69–77. https://doi.org/10.1016/j.clay.2011.01.032Google Scholar
  103. Tewksbury, B. J., Hogan, J. P., Kattenhorn, S. A., et al., 2014. Polygonal Faults in Chalk: Insights from Extensive Exposures of the Khoman Formation, Western Desert, Egypt: Reply. Geology, 42(6): 479–482. https://doi.org/10.1130/G35362.1Google Scholar
  104. Vasseur, G., Djeran-Maigre, I., Grunberger, D., et al., 1995. Evolution of Structural and Physical Parameters of Clays during Experimental Compaction. Marine and Petroleum Geology, 12(8): 941–954. https://doi.org/10.1016/0264-8172(95)98857-2Google Scholar
  105. van Olphen, H., 1977. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists. 2nd ed. John Wiley, New YorkGoogle Scholar
  106. Watterson, J., Walsh, J., Nicol, A., et al., 2000. Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 157(1): 151–162. https://doi.org/10.1144/jgs.157.1.151Google Scholar
  107. Wei, K. S., Cui, H. Y., Ye, S. F., et al., 2001. High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science—Journal of China University of Geosciences, 20: 59–66 (in Chinese with English Abstract)Google Scholar
  108. Weinberger, R., 1999. Initiation and Growth of Cracks during Desiccation of Stratified Muddy Sediments. Journal of Structural Geology, 21(4): 379–386. https://doi.org/10.1016/s0191-8141(99)00029-2Google Scholar
  109. Wiggins, C., Spiegelman, M., 1995. Magma Migration and Magmatic Solitary Waves in 3-D. Geophysical Research Letters, 22(10): 1289–1292. https://doi.org/10.1029/95gl00269Google Scholar
  110. Yarushina, V. M., Podladchikov, Y. Y., 2015. (De)compaction of Porous Viscoelastoplastic Media: Model Formulation. Journal of Geophysical Research: Solid Earth, 120(6): 4146–4170. https://doi.org/10.1002/2014jb011258Google Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CESBIO, Université de ToulouseCNES/CNRS/IRD/UPSToulouseFrance
  2. 2.International Space Science Institute (ISSI)BernSwitzerland
  3. 3.CEREMA, Laboratoire Régional de RouenGroupe Sciences de la Terre, CS 90245Le Grand QuevillyFrance
  4. 4.GET, Université de ToulouseUPS/CNRS/IRD/CNESToulouseFrance
  5. 5.Institut Fondamental d’Afrique Noire (IFAN)Cheikh Anta DioDakarSenegal

Personalised recommendations