Advertisement

The Journal of Physiological Sciences

, Volume 69, Issue 6, pp 837–849 | Cite as

Cardiac Na+/Ca2+ exchange stimulators among cardioprotective drugs

  • Yasuhide WatanabeEmail author
Review

Abstract

We previously reviewed our study of the pharmacological properties of cardiac Na+/Ca2+ exchange (NCX1) inhibitors among cardioprotective drugs, such as amiodarone, bepridil, dronedarone, cibenzoline, azimilide, aprindine, and benzyl-oxyphenyl derivatives (Watanabe et al. in J Pharmacol Sci 102:7–16, 2006). Since then we have continued our studies further and found that some cardioprotective drugs are NCX1 stimulators. Cardiac Na+/Ca2+ exchange current (INCX1) was stimulated by nicorandil (a hybrid ATP-sensitive K+ channel opener), pinacidil (a non-selective ATP-sensitive K+ channel opener), flecainide (an antiarrhythmic drug), and sodium nitroprusside (SNP) (an NO donor). Sildenafil (a phosphodiesterase-5 inhibitor) further increased the pinacidil-induced augmentation of INCX1. In paper, here I review the NCX stimulants that enhance NCX function among the cardioprotective agents we examined such as nicorandil, pinacidil, SNP, sildenafil and flecainide, in addition to atrial natriuretic (ANP) and dofetilide, which were reported by other investigators.

Keywords

Cardiac Na+/Ca2+ exchanger (NCX1) Cardiac Na+/Ca2+ exchange current (INCX1NCX1 stimulator Patch-clamp method Cardioprotective drug 

Notes

Acknowledgements

I thank Dr. Junko Kimura for helpful and critical comments on the manuscript. This study was supported by Grants-in-Aid for Scientific Research (17K11047) from the Japan Society for Promotion of Science.

Compliance with ethical standards

Conflict of interest

The author of this manuscript has no conflict of interest to declare.

References

  1. 1.
    Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Cir Res 87:275–281CrossRefGoogle Scholar
  3. 3.
    Sarai N, Kobayashi T, Matsuoka S, Noma A (2006) A simulation study to rescue the Na+/Ca2+ exchanger knockout mice. J Physiol Sci 56:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Iwamoto T, Nakamura TY, Pan Y, Uehara A, Imanaga I, Shigekawa M (1999) Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett 446:264–268PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274:910–917PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ren X, Philipson KD (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57:68–71PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Szerencsei RT, Kinjo TG, Schnetkamp PPM (2013) The topology of the C-terminal sections of the NCX1 Na+/Ca2+ exchanger and the NCKX2 Na+/Ca2+-K+ exchanger. Channels 7:109–114PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271:13609–13615PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Shigekawa M, Iwamoto T (2001) Cardiac Na+/Ca2+ exchange: molecular and pharmacological aspects. Cir Res 88:864–876CrossRefGoogle Scholar
  10. 10.
    Watanabe Y, Koide Y, Kimura J (2006) Topics on the Na+/Ca2+ exchanger: pharmacological characterization on Na+/Ca2+ exchanger inhibitors. J Pharmacol Sci 102:7–16PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Iwamoto T, Watanabe Y, Kita S, Blaustein MP (2007) Na+/Ca2+ exchange inhibitors: a new class of calcium regulators. Cardiovasc Hematol Disord Drug Targets 7:188–198PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266:12337–12341PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nishimura J (2006) Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchanger in the vasodilator-induced vasorelaxation. J Pharmacol Sci 102:27–31PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kitao T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T, Ago Y, Matsuda T (2010) The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 57:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Horie M, Suzuki H, Hayashi S, Zang W-J, Komori M, Okada Y, Fujita J, Kawai C (1991) Nicorandil reduced the basal level of cytosolic free calcium in single guinea pig ventricular myocytes. Cell Struc Funct 16:433–440CrossRefGoogle Scholar
  16. 16.
    Baczkó I, Giles WR, Light PE (2004) Pharmacological activation of plasma-membrane KATP channels reduces reoxygenation-induced Ca2+ overload in cardiac myocytes via modulation of the diastolic membrane potential. Br J Pharmacol 141:1059–1067PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Aizawa K, Takahashi Y, Higashijima N, Serizawa K, Yogo K, Ishizuka N, Endo K, Fukuyama N, Hirano K, Ishida H (2015) Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation. J Pharmacol Sci 127:284–291PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kajioka S, Oike M, Kitamura K (1990) Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther 254:905–913PubMedPubMedCentralGoogle Scholar
  19. 19.
    Nishimura N, Reien Y, Matsumoto A, Ogura T, Miyata Y, Suzuki K, Nakazato Y, Daida H, Nakaya H (2010) Effects of nicorandil on the cAMP-dependent Cl- current in guinea-pig ventricular cells. J Pharmacol Sci 112:415–423PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kukovetz WR, Holzmann S, Braida C, Pöch G (1991) Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization. J Cardiovasc Pharmacol 17:627–633PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA (1991) Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 17:903–912PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ishizuka N, Saito K, Akima M, Matsubara S, Saito M (2000) Hypotensive interaction of sildenafil and nicorandil in rats through the cGMP pathway but not by KATP channel activation. Jpn J Pharmacol 84:316–324PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wei JZ, Watanabe Y, Takeuchi K, Yamashita K, Tashiro M, Kita S, Iwamoto T, Watanabe H, Kimura J (2016) Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes. Pflugers Arch 468:693–703PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Liou JY, Hong HJ, Sung LC, Chao HH, Chen PY, Cheng TH, Chan P, Liu JC (2011) Nicorandil inhibits angiotensin-II-induced proliferation of cultured rat cardiac fibroblasts. Pharmacology 87:144–151PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pan Y, Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M (2000) Physiological functions of the regulatory domains of cardiac Na+/Ca2+ exchanger NCX1. Am J Physiol 279:C393–C402CrossRefGoogle Scholar
  27. 27.
    Iguchi K, Saotome M, Yamashita K, Hasan P, Sasaki M, Maekawa Y, Watanabe Y (2019) Pinacidil, a KATP channel opener, stimulates cardiac Na+/Ca2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea-pig cardiac ventricular myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 392:949–959CrossRefGoogle Scholar
  28. 28.
    Han J, Kim N, Joo H, Kim E, Earm Y (2002) ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 283:H1545–H1554PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Murphy ME, Brayden JE (1995) Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486:47–58PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mączewski M, Beręsewicz A (1997) Inhibition of nitric oxide synthesis and ischemia/reperfusion attenuate coronary vasodilator response to pinacidil in isolated rat heart. J Physiol Pharmacol 48:737–749PubMedPubMedCentralGoogle Scholar
  32. 32.
    Goldhaber JI (1996) Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol Heart Circ Physiol 271:H823–H833CrossRefGoogle Scholar
  33. 33.
    Eigel BN, Gursahani H, Hardley RW (2004) ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 286:H955–H963PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hinata M, Matsuoka I, Iwamoto T, Watanabe Y, Kimura J (2007) Mechanism of Na+/Ca2+ exchanger activation by hydrogen peroxide in guinea-pig ventricular myocytes. J Pharmacol Sci 103:283–292PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN (2002) Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97:365–373PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Han J, Kim N, Park J, Seog D-H, Joo H, Kim E (2002) Opening of mitochondrial ATP-sensitive potassium channels evokes oxygen radical generation in rabbit heart slices. J Biochem 131:721–727PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Holmuhamedov EL, Jovanović S, Dzeja PP, Jovanović A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondria function. Am J Physiol 275:H1567–H1576PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lugnier C (2011) PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 11:698–706PubMedCrossRefGoogle Scholar
  39. 39.
    Gendron ME, Thorin E, Perrault LP (2004) Loss of endothelial KATP channel-dependent, NO-mediated dilation of endocardial resistance coronary arteries in pigs with left ventricular hypertrophy. Br J Pharmacol 143:285–291PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev 96:177–252PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wu Y, He M-Y, Ye J-K, Ma S-Y, Huang W, Wei Y-Y, Kong H, Wang H, Zeng X-N, Xie W-P (2017) Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca2+/Akt/eNOS pathway. J Cell Mol Med 21:609–620PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Katakam PVG, Dutta S, Sure VN, Grovenburg SM, Gordon AO, Peterson NR, Rutkai I, Busija DW (2016) Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol 310:H1097–H1106PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Teubl M, Groschner K, Kohlwein SD, Mayer B, Schmidt K (1999) Na+/Ca2+ exchange facilitates Ca2+-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 274:29529–29535PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bossuyt J, Taylor BE, James-Kracke M, Hale CC (2002) Evidence for cardiac sodium-calcium exchanger association with caveolin-3. FEBS Lett 511:113–117PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hare JM, Lofthouse RA, Juang GJ, Colman L, Ricker KM, Kim B, Senzaki H, Cao S, Tunin RS, Kass DA (2000) Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 86:1085–1092PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Michel T, Feron O (1997) Nitric oxide synthase: which, where, why, and how? J Clin Invest 100:2146–2157PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Brahmajothi MV, Campbell DL (1999) Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoform in mammalian heart: implications for mechanisms governing indirect and direct nitric oxide-related effects. Cir Res 85:575–587CrossRefGoogle Scholar
  48. 48.
    Gonzalez DR, Treuer A, Sun Q-A, Stamler JS, Hare JM (2009) S-nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gooshe M, Tabaeizadeh M, Aleyasin AR, Mojahedi P, Ghasemi K, Yousefi F, Vafaei A, Amini-Khoei H, Amiri S, Dehpour AR (2017) Levosimendan exerts anticonvulsant properties against PTZ-induced seizures in mice through activation of nNOS/NO pathway: role for KATP channel. Life Sci 168:38–46PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    El-Gowelli HM, El-Gowilli SM, Elsalakawy LK, El-Mas MM (2013) Nitric oxide synthase/K+ channel cascade triggers the adenosine A(2B) receptor-sensitive renal vasodilation in female rats. Eur J Pharmacol 702:116–125PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG (1988) The potassium channel opening action of pinacidil: studies using biochemical, ion flux and microelectrode techniques. Naunyn Schmiedeberg’s Arch Pharmacol 338:310–318CrossRefGoogle Scholar
  52. 52.
    Newgreen DT, Bray KM, McHarg AD, Weston AH, Duty S, Brown BS, Kay PB, Edwards G, Longmore J, Southerton JS (1990) The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol 100:605–613PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ozawa T, Shinke T, Shite J, Takaoka H, Inoue N, Matsumoto H, Watanabe S, Yoshikawa R, Otake H, Matsumoto D, Ogasawara D, Yokoyama M, Hirata K (2015) Effects of human atrial natriuretic peptide on myocardial performance and energetics in heart failure due to previous myocardial infarction. J Cardiol 66:232–238PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Asano S, Matsuda T, Takuma K, Kim HS, Sato T, Nishikawa T, Baba A (1995) Nitroprusside and cyclic GMP stimulate Na+-Ca2+ exchange activity in neuronal preparations and cultured astrocytes. J Neurochem 64:437–441Google Scholar
  55. 55.
    Nashida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59:51–58PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Falk RH, Fogel RI (1994) Flecainide. J Cardiovasc Electrophysiol 5:964–981PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Melgari D, Zhang Y, Harchi AEI, Dempsey CE, Hancox J (2015) Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 86:42–53PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Krassói L, Varró A, Papp JG (1996) Effect of restacorin on the early and delayed after depolarization in dog Purkinje fibres. Acta Physiol Hung 84:299–300PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kuroda Y, Yuasa S, Watanabe Y, Ito S, Egashira T, Seki T, Hattori T, Ohno S, Kodaira M, Suzuki T, Hashimoto H, Okata S, Tanaka A, Aizawa Y, Murata M, Aiba T, Makita N, Furukawa T, Shimizu W, Kodama I, Ogawa S, Kokubun N, Horigome H, Horie M, Kamiya K, Fukuda K (2017) Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochem Biophys Rep 9:245–256PubMedPubMedCentralGoogle Scholar
  60. 60.
    Sikkel MB, Collins TP, Rowlands C, Shah M, O’Gara P, Williams AJ, Harding SE, Lyon AR, MacLeod KT (2013) Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcolemmal sodium current. Cardiovasc Res 98:286–296PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas G (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110:904–910PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tashiro M, Watanabe Y, Yamakawa T, Yamashita K, Kita S, Iwamoto T, Kimura J (2017) Suppressive effect of carvedilol on Na+/Ca2+ exchange current in isolated guinea-pig cardiac ventricular myocytes. Pharmacology 99:40–47PubMedCrossRefGoogle Scholar
  63. 63.
    Tande PM, Bjørnstad H, Yang T, Refsum H (1990) Rate-dependent class III antiarrhythmic action, negative chronotropy, and positive inotropy of a novel IK blocking drug, UK-68,798: potent in guinea pig but no effect in rat myocardium. J Cardiovasc Pharmacol 16:401–410PubMedCrossRefGoogle Scholar
  64. 64.
    Xie JY, Yuan CS, Zhou Z, January CT (2000) Enhancement of delayed afterdepolarizations and triggered activity by class III antiarrhythmic drugs: multiple effects of E-4031 and dofetilide. Methods Find Exp Clin Pharmacol 22:67–76PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhang X-P, Wu B-W, Yang C-H, Wang J, Niu S-C, Zhang M-S (2009) Dofetilide enhances the contractility of rat ventricular myocytes via augmentation of Na+-Ca2+ exchange. Cardiovasc Drugs Ther 23:207–214PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, Vos MA (2000) Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 102:2137–2144PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Cir Res 88:1159–1167CrossRefGoogle Scholar
  68. 68.
    Hobai IA, O’Rourke B (2004) The potential of Na+/Ca2+ exchange blockers in the treatment of cardiac diseases. Expert Opin Investig Drugs 13:653–664PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Antoons G, Sipido KR (2008) Targeting calcium handling in arrhythmia. Europace 10:1364–1405PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization: underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Imanishi S, Arita M, Aomine M, Kiyosue T (1984) Antiarrhythmic effects of nicorandil on canine cardiac Purkinje fibers. J Cardiovasc Pharmacol 6:772–779PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lathrop DA, Nànàsi PP, Varrò A (1990) In vitro cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil. Br J Pharmacol 99:119–123PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Spinelli W, Sorota S, Siegal M, Hoffman BF (1991) Antiarrhythmic actions of the ATP-regulated K+ current activated by pinacidil. Circ Res 68:1127–1137PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Carlsson L, Abrahamsson C, Drews L, Duker G (1992) Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization. Circulation 85:1491–1500PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Krassói L, Varró A, Papp JG (1996) Effect of restacorin on the early and delayed after depolarization in dog Purkinje fibres. Acta Physiol Hung 84:299–300PubMedPubMedCentralGoogle Scholar
  76. 76.
    Watanabe I, Okamura Y, Ohkubo K, Nagashima K, Mano H, Sonoda K, Kofune M, Kunimoto S, Kasamaki Y, Hirayama A (2011) Effect of ATP-sensitive K+ channel opener nicorandil in a canine model of proarrhythmia. Int Heart J 52:318–322PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Despa S, Brette F, Orchard CH, Bers DM (2003) Na/Ca exchange Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J 85:3388–3396PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Matchkov VV, Gustafsson H, Rahman A, Boedtkjer DMB, Gorintin S, Hansen AK, Bouzinova EV, Praetorius HA, Aalkjaer C, Nilsson H (2007) Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication. Circ Res 100:1026–1035PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Undrovinas NA, Maltsev VA, Belardinelli L, Sabbah HN, Undrovinas A (2010) Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure. J Physiol Sci 60:245–257PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L (2013) The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 99:600–611PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL-H (2018) Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 175:1260–1278PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Liu N, Denegri M, Ruan Y, Avelino-Cruz JE, Perissi A, Negri S, Napolitano C, Coetzee WA, Boyden PA, Priori SG (2011) Short communication: flecainide exerts an antiarrhythmic effect a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. Cir Res 109:291–295CrossRefGoogle Scholar
  83. 83.
    Xu L, Kappler C, Mani S, Shepherd N, Renaud L, Snider P, Conway SJ, Menick DR (2009) Chronic administration of KB-R7943 induces up-regulation of cardiac NCX1. J Biol Chem 284:27265–27272PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Pharmacological Science, Department of Health ScienceHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations