Cardiac Na+/Ca2+ exchange stimulators among cardioprotective drugs
Abstract
We previously reviewed our study of the pharmacological properties of cardiac Na+/Ca2+ exchange (NCX1) inhibitors among cardioprotective drugs, such as amiodarone, bepridil, dronedarone, cibenzoline, azimilide, aprindine, and benzyl-oxyphenyl derivatives (Watanabe et al. in J Pharmacol Sci 102:7–16, 2006). Since then we have continued our studies further and found that some cardioprotective drugs are NCX1 stimulators. Cardiac Na+/Ca2+ exchange current (INCX1) was stimulated by nicorandil (a hybrid ATP-sensitive K+ channel opener), pinacidil (a non-selective ATP-sensitive K+ channel opener), flecainide (an antiarrhythmic drug), and sodium nitroprusside (SNP) (an NO donor). Sildenafil (a phosphodiesterase-5 inhibitor) further increased the pinacidil-induced augmentation of INCX1. In paper, here I review the NCX stimulants that enhance NCX function among the cardioprotective agents we examined such as nicorandil, pinacidil, SNP, sildenafil and flecainide, in addition to atrial natriuretic (ANP) and dofetilide, which were reported by other investigators.
Keywords
Cardiac Na+/Ca2+ exchanger (NCX1) Cardiac Na+/Ca2+ exchange current (INCX1) NCX1 stimulator Patch-clamp method Cardioprotective drugNotes
Acknowledgements
I thank Dr. Junko Kimura for helpful and critical comments on the manuscript. This study was supported by Grants-in-Aid for Scientific Research (17K11047) from the Japan Society for Promotion of Science.
Compliance with ethical standards
Conflict of interest
The author of this manuscript has no conflict of interest to declare.
References
- 1.Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedCrossRefPubMedCentralGoogle Scholar
- 2.Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Cir Res 87:275–281CrossRefGoogle Scholar
- 3.Sarai N, Kobayashi T, Matsuoka S, Noma A (2006) A simulation study to rescue the Na+/Ca2+ exchanger knockout mice. J Physiol Sci 56:211–217PubMedCrossRefPubMedCentralGoogle Scholar
- 4.Iwamoto T, Nakamura TY, Pan Y, Uehara A, Imanaga I, Shigekawa M (1999) Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett 446:264–268PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Nicoll DA, Ottolia M, Lu L, Lu Y, Philipson KD (1999) A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274:910–917PubMedCrossRefPubMedCentralGoogle Scholar
- 6.Ren X, Philipson KD (2013) The topology of the cardiac Na+/Ca2+ exchanger, NCX1. J Mol Cell Cardiol 57:68–71PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Szerencsei RT, Kinjo TG, Schnetkamp PPM (2013) The topology of the C-terminal sections of the NCX1 Na+/Ca2+ exchanger and the NCKX2 Na+/Ca2+-K+ exchanger. Channels 7:109–114PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M (1996) Phosphorylation-dependent regulation of cardiac Na+/Ca2+ exchanger via protein kinase C. J Biol Chem 271:13609–13615PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Shigekawa M, Iwamoto T (2001) Cardiac Na+/Ca2+ exchange: molecular and pharmacological aspects. Cir Res 88:864–876CrossRefGoogle Scholar
- 10.Watanabe Y, Koide Y, Kimura J (2006) Topics on the Na+/Ca2+ exchanger: pharmacological characterization on Na+/Ca2+ exchanger inhibitors. J Pharmacol Sci 102:7–16PubMedCrossRefPubMedCentralGoogle Scholar
- 11.Iwamoto T, Watanabe Y, Kita S, Blaustein MP (2007) Na+/Ca2+ exchange inhibitors: a new class of calcium regulators. Cardiovasc Hematol Disord Drug Targets 7:188–198PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266:12337–12341PubMedPubMedCentralGoogle Scholar
- 13.Nishimura J (2006) Topics on the Na+/Ca2+ exchanger: involvement of Na+/Ca2+ exchanger in the vasodilator-induced vasorelaxation. J Pharmacol Sci 102:27–31PubMedCrossRefPubMedCentralGoogle Scholar
- 14.Kitao T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T, Ago Y, Matsuda T (2010) The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 57:58–66PubMedCrossRefPubMedCentralGoogle Scholar
- 15.Horie M, Suzuki H, Hayashi S, Zang W-J, Komori M, Okada Y, Fujita J, Kawai C (1991) Nicorandil reduced the basal level of cytosolic free calcium in single guinea pig ventricular myocytes. Cell Struc Funct 16:433–440CrossRefGoogle Scholar
- 16.Baczkó I, Giles WR, Light PE (2004) Pharmacological activation of plasma-membrane KATP channels reduces reoxygenation-induced Ca2+ overload in cardiac myocytes via modulation of the diastolic membrane potential. Br J Pharmacol 141:1059–1067PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Aizawa K, Takahashi Y, Higashijima N, Serizawa K, Yogo K, Ishizuka N, Endo K, Fukuyama N, Hirano K, Ishida H (2015) Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation. J Pharmacol Sci 127:284–291PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Kajioka S, Oike M, Kitamura K (1990) Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther 254:905–913PubMedPubMedCentralGoogle Scholar
- 19.Nishimura N, Reien Y, Matsumoto A, Ogura T, Miyata Y, Suzuki K, Nakazato Y, Daida H, Nakaya H (2010) Effects of nicorandil on the cAMP-dependent Cl- current in guinea-pig ventricular cells. J Pharmacol Sci 112:415–423PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Kukovetz WR, Holzmann S, Braida C, Pöch G (1991) Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization. J Cardiovasc Pharmacol 17:627–633PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Meisheri KD, Cipkus-Dubray LA, Hosner JM, Khan SA (1991) Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. J Cardiovasc Pharmacol 17:903–912PubMedCrossRefPubMedCentralGoogle Scholar
- 22.Ishizuka N, Saito K, Akima M, Matsubara S, Saito M (2000) Hypotensive interaction of sildenafil and nicorandil in rats through the cGMP pathway but not by KATP channel activation. Jpn J Pharmacol 84:316–324PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Minamiyama Y, Takemura S, Hai S, Suehiro S, Okada S, Funae Y (2007) Nicorandil elevates tissue cGMP levels in a nitric-oxide-independent manner. J Pharmacol Sci 103:33–39PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Wei JZ, Watanabe Y, Takeuchi K, Yamashita K, Tashiro M, Kita S, Iwamoto T, Watanabe H, Kimura J (2016) Nicorandil stimulates a Na+/Ca2+ exchanger by activating guanylate cyclase in guinea pig cardiac myocytes. Pflugers Arch 468:693–703PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Liou JY, Hong HJ, Sung LC, Chao HH, Chen PY, Cheng TH, Chan P, Liu JC (2011) Nicorandil inhibits angiotensin-II-induced proliferation of cultured rat cardiac fibroblasts. Pharmacology 87:144–151PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Pan Y, Iwamoto T, Uehara A, Nakamura TY, Imanaga I, Shigekawa M (2000) Physiological functions of the regulatory domains of cardiac Na+/Ca2+ exchanger NCX1. Am J Physiol 279:C393–C402CrossRefGoogle Scholar
- 27.Iguchi K, Saotome M, Yamashita K, Hasan P, Sasaki M, Maekawa Y, Watanabe Y (2019) Pinacidil, a KATP channel opener, stimulates cardiac Na+/Ca2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea-pig cardiac ventricular myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 392:949–959CrossRefGoogle Scholar
- 28.Han J, Kim N, Joo H, Kim E, Earm Y (2002) ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 283:H1545–H1554PubMedCrossRefPubMedCentralGoogle Scholar
- 29.Cuong DV, Kim N, Youm JB, Joo H, Warda M, Lee JW, Park WS, Kim T, Kang S, Kim H, Han J (2006) Nitric oxide-cGMP-protein kinase G signaling pathway induces anoxic preconditioning through activation of ATP-sensitive K+ channels in rat hearts. Am J Physiol Heart Circ Physiol 290:H1808–H1817PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Murphy ME, Brayden JE (1995) Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels. J Physiol 486:47–58PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Mączewski M, Beręsewicz A (1997) Inhibition of nitric oxide synthesis and ischemia/reperfusion attenuate coronary vasodilator response to pinacidil in isolated rat heart. J Physiol Pharmacol 48:737–749PubMedPubMedCentralGoogle Scholar
- 32.Goldhaber JI (1996) Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol Heart Circ Physiol 271:H823–H833CrossRefGoogle Scholar
- 33.Eigel BN, Gursahani H, Hardley RW (2004) ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 286:H955–H963PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Hinata M, Matsuoka I, Iwamoto T, Watanabe Y, Kimura J (2007) Mechanism of Na+/Ca2+ exchanger activation by hydrogen peroxide in guinea-pig ventricular myocytes. J Pharmacol Sci 103:283–292PubMedCrossRefPubMedCentralGoogle Scholar
- 35.Krenz M, Oldenburg O, Wimpee H, Cohen MV, Garlid KD, Critz SD, Downey JM, Benoit JN (2002) Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol 97:365–373PubMedCrossRefPubMedCentralGoogle Scholar
- 36.Han J, Kim N, Park J, Seog D-H, Joo H, Kim E (2002) Opening of mitochondrial ATP-sensitive potassium channels evokes oxygen radical generation in rabbit heart slices. J Biochem 131:721–727PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Holmuhamedov EL, Jovanović S, Dzeja PP, Jovanović A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondria function. Am J Physiol 275:H1567–H1576PubMedPubMedCentralGoogle Scholar
- 38.Lugnier C (2011) PDE inhibitors: a new approach to treat metabolic syndrome? Curr Opin Pharmacol 11:698–706PubMedCrossRefGoogle Scholar
- 39.Gendron ME, Thorin E, Perrault LP (2004) Loss of endothelial KATP channel-dependent, NO-mediated dilation of endocardial resistance coronary arteries in pigs with left ventricular hypertrophy. Br J Pharmacol 143:285–291PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev 96:177–252PubMedCrossRefPubMedCentralGoogle Scholar
- 41.Wu Y, He M-Y, Ye J-K, Ma S-Y, Huang W, Wei Y-Y, Kong H, Wang H, Zeng X-N, Xie W-P (2017) Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca2+/Akt/eNOS pathway. J Cell Mol Med 21:609–620PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Katakam PVG, Dutta S, Sure VN, Grovenburg SM, Gordon AO, Peterson NR, Rutkai I, Busija DW (2016) Depolarization of mitochondria in neurons promotes activation of nitric oxide synthase and generation of nitric oxide. Am J Physiol Heart Circ Physiol 310:H1097–H1106PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Teubl M, Groschner K, Kohlwein SD, Mayer B, Schmidt K (1999) Na+/Ca2+ exchange facilitates Ca2+-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 274:29529–29535PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Bossuyt J, Taylor BE, James-Kracke M, Hale CC (2002) Evidence for cardiac sodium-calcium exchanger association with caveolin-3. FEBS Lett 511:113–117PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Hare JM, Lofthouse RA, Juang GJ, Colman L, Ricker KM, Kim B, Senzaki H, Cao S, Tunin RS, Kass DA (2000) Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 86:1085–1092PubMedCrossRefPubMedCentralGoogle Scholar
- 46.Michel T, Feron O (1997) Nitric oxide synthase: which, where, why, and how? J Clin Invest 100:2146–2157PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Brahmajothi MV, Campbell DL (1999) Heterogeneous basal expression of nitric oxide synthase and superoxide dismutase isoform in mammalian heart: implications for mechanisms governing indirect and direct nitric oxide-related effects. Cir Res 85:575–587CrossRefGoogle Scholar
- 48.Gonzalez DR, Treuer A, Sun Q-A, Stamler JS, Hare JM (2009) S-nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Gooshe M, Tabaeizadeh M, Aleyasin AR, Mojahedi P, Ghasemi K, Yousefi F, Vafaei A, Amini-Khoei H, Amiri S, Dehpour AR (2017) Levosimendan exerts anticonvulsant properties against PTZ-induced seizures in mice through activation of nNOS/NO pathway: role for KATP channel. Life Sci 168:38–46PubMedCrossRefPubMedCentralGoogle Scholar
- 50.El-Gowelli HM, El-Gowilli SM, Elsalakawy LK, El-Mas MM (2013) Nitric oxide synthase/K+ channel cascade triggers the adenosine A(2B) receptor-sensitive renal vasodilation in female rats. Eur J Pharmacol 702:116–125PubMedCrossRefPubMedCentralGoogle Scholar
- 51.Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG (1988) The potassium channel opening action of pinacidil: studies using biochemical, ion flux and microelectrode techniques. Naunyn Schmiedeberg’s Arch Pharmacol 338:310–318CrossRefGoogle Scholar
- 52.Newgreen DT, Bray KM, McHarg AD, Weston AH, Duty S, Brown BS, Kay PB, Edwards G, Longmore J, Southerton JS (1990) The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim. Br J Pharmacol 100:605–613PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Ozawa T, Shinke T, Shite J, Takaoka H, Inoue N, Matsumoto H, Watanabe S, Yoshikawa R, Otake H, Matsumoto D, Ogasawara D, Yokoyama M, Hirata K (2015) Effects of human atrial natriuretic peptide on myocardial performance and energetics in heart failure due to previous myocardial infarction. J Cardiol 66:232–238PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Asano S, Matsuda T, Takuma K, Kim HS, Sato T, Nishikawa T, Baba A (1995) Nitroprusside and cyclic GMP stimulate Na+-Ca2+ exchange activity in neuronal preparations and cultured astrocytes. J Neurochem 64:437–441Google Scholar
- 55.Nashida T, Takuma K, Fukuda S, Kawasaki T, Takahashi T, Baba A, Ago Y, Matsuda T (2011) The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 59:51–58PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Falk RH, Fogel RI (1994) Flecainide. J Cardiovasc Electrophysiol 5:964–981PubMedCrossRefPubMedCentralGoogle Scholar
- 57.Melgari D, Zhang Y, Harchi AEI, Dempsey CE, Hancox J (2015) Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 86:42–53PubMedPubMedCentralCrossRefGoogle Scholar
- 58.Krassói L, Varró A, Papp JG (1996) Effect of restacorin on the early and delayed after depolarization in dog Purkinje fibres. Acta Physiol Hung 84:299–300PubMedPubMedCentralGoogle Scholar
- 59.Kuroda Y, Yuasa S, Watanabe Y, Ito S, Egashira T, Seki T, Hattori T, Ohno S, Kodaira M, Suzuki T, Hashimoto H, Okata S, Tanaka A, Aizawa Y, Murata M, Aiba T, Makita N, Furukawa T, Shimizu W, Kodama I, Ogawa S, Kokubun N, Horigome H, Horie M, Kamiya K, Fukuda K (2017) Flecainide ameliorates arrhythmogenicity through NCX flux in Andersen-Tawil syndrome-iPS cell-derived cardiomyocytes. Biochem Biophys Rep 9:245–256PubMedPubMedCentralGoogle Scholar
- 60.Sikkel MB, Collins TP, Rowlands C, Shah M, O’Gara P, Williams AJ, Harding SE, Lyon AR, MacLeod KT (2013) Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcolemmal sodium current. Cardiovasc Res 98:286–296PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas G (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110:904–910PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Tashiro M, Watanabe Y, Yamakawa T, Yamashita K, Kita S, Iwamoto T, Kimura J (2017) Suppressive effect of carvedilol on Na+/Ca2+ exchange current in isolated guinea-pig cardiac ventricular myocytes. Pharmacology 99:40–47PubMedCrossRefGoogle Scholar
- 63.Tande PM, Bjørnstad H, Yang T, Refsum H (1990) Rate-dependent class III antiarrhythmic action, negative chronotropy, and positive inotropy of a novel IK blocking drug, UK-68,798: potent in guinea pig but no effect in rat myocardium. J Cardiovasc Pharmacol 16:401–410PubMedCrossRefGoogle Scholar
- 64.Xie JY, Yuan CS, Zhou Z, January CT (2000) Enhancement of delayed afterdepolarizations and triggered activity by class III antiarrhythmic drugs: multiple effects of E-4031 and dofetilide. Methods Find Exp Clin Pharmacol 22:67–76PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Zhang X-P, Wu B-W, Yang C-H, Wang J, Niu S-C, Zhang M-S (2009) Dofetilide enhances the contractility of rat ventricular myocytes via augmentation of Na+-Ca2+ exchange. Cardiovasc Drugs Ther 23:207–214PubMedCrossRefPubMedCentralGoogle Scholar
- 66.Sipido KR, Volders PG, de Groot SH, Verdonck F, Van de Werf F, Wellens HJ, Vos MA (2000) Enhanced Ca2+ release and Na/Ca exchange activity in hypertrophied canine ventricular myocytes: potential link between contractile adaptation and arrhythmogenesis. Circulation 102:2137–2144PubMedCrossRefPubMedCentralGoogle Scholar
- 67.Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Cir Res 88:1159–1167CrossRefGoogle Scholar
- 68.Hobai IA, O’Rourke B (2004) The potential of Na+/Ca2+ exchange blockers in the treatment of cardiac diseases. Expert Opin Investig Drugs 13:653–664PubMedCrossRefPubMedCentralGoogle Scholar
- 69.Antoons G, Sipido KR (2008) Targeting calcium handling in arrhythmia. Europace 10:1364–1405PubMedCrossRefPubMedCentralGoogle Scholar
- 70.Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization: underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Imanishi S, Arita M, Aomine M, Kiyosue T (1984) Antiarrhythmic effects of nicorandil on canine cardiac Purkinje fibers. J Cardiovasc Pharmacol 6:772–779PubMedCrossRefPubMedCentralGoogle Scholar
- 72.Lathrop DA, Nànàsi PP, Varrò A (1990) In vitro cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil. Br J Pharmacol 99:119–123PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Spinelli W, Sorota S, Siegal M, Hoffman BF (1991) Antiarrhythmic actions of the ATP-regulated K+ current activated by pinacidil. Circ Res 68:1127–1137PubMedCrossRefPubMedCentralGoogle Scholar
- 74.Carlsson L, Abrahamsson C, Drews L, Duker G (1992) Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization. Circulation 85:1491–1500PubMedCrossRefPubMedCentralGoogle Scholar
- 75.Krassói L, Varró A, Papp JG (1996) Effect of restacorin on the early and delayed after depolarization in dog Purkinje fibres. Acta Physiol Hung 84:299–300PubMedPubMedCentralGoogle Scholar
- 76.Watanabe I, Okamura Y, Ohkubo K, Nagashima K, Mano H, Sonoda K, Kofune M, Kunimoto S, Kasamaki Y, Hirayama A (2011) Effect of ATP-sensitive K+ channel opener nicorandil in a canine model of proarrhythmia. Int Heart J 52:318–322PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Despa S, Brette F, Orchard CH, Bers DM (2003) Na/Ca exchange Na/K-ATPase function are equally concentrated in transverse tubules of rat ventricular myocytes. Biophys J 85:3388–3396PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Matchkov VV, Gustafsson H, Rahman A, Boedtkjer DMB, Gorintin S, Hansen AK, Bouzinova EV, Praetorius HA, Aalkjaer C, Nilsson H (2007) Interaction between Na+/K+-pump and Na+/Ca2+-exchanger modulates intercellular communication. Circ Res 100:1026–1035PubMedCrossRefPubMedCentralGoogle Scholar
- 79.Undrovinas NA, Maltsev VA, Belardinelli L, Sabbah HN, Undrovinas A (2010) Late sodium current contributes to diastolic cell Ca2+ accumulation in chronic heart failure. J Physiol Sci 60:245–257PubMedPubMedCentralCrossRefGoogle Scholar
- 80.Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L (2013) The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 99:600–611PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL-H (2018) Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 175:1260–1278PubMedCrossRefPubMedCentralGoogle Scholar
- 82.Liu N, Denegri M, Ruan Y, Avelino-Cruz JE, Perissi A, Negri S, Napolitano C, Coetzee WA, Boyden PA, Priori SG (2011) Short communication: flecainide exerts an antiarrhythmic effect a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. Cir Res 109:291–295CrossRefGoogle Scholar
- 83.Xu L, Kappler C, Mani S, Shepherd N, Renaud L, Snider P, Conway SJ, Menick DR (2009) Chronic administration of KB-R7943 induces up-regulation of cardiac NCX1. J Biol Chem 284:27265–27272PubMedPubMedCentralCrossRefGoogle Scholar