Cross talk between 26S proteasome and mitochondria in human mesenchymal stem cells’ ability to survive under hypoxia stress

  • Ramada R. Khasawneh
  • Ejlal Abu-El-RubEmail author
  • Abdullah Omar Serhan
  • Bashar Omar Serhan
  • Hadeel Abu-El-Rub
Original Paper


Mesenchymal stem cells (MSCs) are regarded as unique cells which play an imperative role in the field of regenerative medicine. They are characterized by the self-renewal capacity, multi-lineage differentiation abilities and immunomodulation properties which render them perfectly ideal cell type for treating a wide range of chronic diseases. Despite these enchanted features, there are many hurdles that need to be circumvented to ensure their long-term survival and viability after transplantation. Recently, hypoxia has been indicated as one of the most baffling stress conditions that can affect the survival rate of MSCs either positively or negatively depending on the level of hypoxia. MSCs can survive well under moderate hypoxia, but die shortly if they were exposed to severe hypoxia without clearly convincing explanation for this enigma. The current study reveals a novel mechanism of 26S proteasome in controlling the ability of BM-MSCs to withstand hypoxic stress by maintaining proper mitochondrial function. The results indicated that 26S proteasome remains functioning once BM- MSCs are exposed to moderate hypoxia (2.5%O2) and preserves their survival and proliferation mediated by intact mitochondrial performance, whereas 26S proteasome becomes inactive when BM-MSCs faces severe hypoxia that lead to poor mitochondrial function and less chance to survive longer. The outcomes of this study demonstrated the importance of 26S proteasome machinery in enhancing the resistance of BM-MSCs to hypoxic stress condition which may help in better planning future studies that target this system.

Graphic abstract

Schematic representation summarizing the findings of the current study. 26S proteasome function preservation in normoxia and moderate hypoxia leads to maintain appropriate proliferation and mitochondrial activity in human BM-MSCs and promote their survival. On the opposite side, severe hypoxia disrupts the 26S proteasome function leading to significant reduction in the proliferation, survival and mitochondrial dynamics in human BM-MSCs causing their death.


Mesenchymal stem cells Hypoxia Survival Proteasome Mitochondria 



We would like to thank Mr. Muhammad Abu-El Rub for the time and effort he spent in reviewing the Manuscript.

Author contributions

RRK and EAR conceptualized the study; RRK and EAR designed the experiments; RRK, AOS, BOS and HAR carried out the experiments, acquired and analyzed the data; EAR and RRK interpreted the data and performed statistical analyses; EAR and RRK wrote the manuscript. All the authors have read and approved the final version of the manuscript.


The study was funded by a grant from the Deanship of Research at Yarmouk University.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Abu-El-Rub E, Sequiera GL, Sareen N et al (2019) Hypoxia-induced 26S proteasome dysfunction increases immunogenicity of mesenchymal stem cells. Cell Death Dis 10:90. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Azad P, Haddad G (2017) Molecular basis of hypoxia induced excessive erythrocytosis. FASEB J 31:709.5. CrossRefGoogle Scholar
  3. 3.
    Bard JAM, Goodall EA, Greene ER et al (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87:697–724. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Box AH, Kim S-M, Demetrick DJ (2010) AKT loss in human epithelial cells treated with severe hypoxia. Biochim Biophys Acta 1803:951–959. CrossRefPubMedGoogle Scholar
  5. 5.
    Capasso S, Alessio N, Squillaro T et al (2015) Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget 6:39457–39468. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Castro-Manrreza ME, Montesinos JJ (2015) Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015:394917. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cho J, D’Antuono M, Glicksman M et al (2018) A review of clinical trials: mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem cells 7:82–93PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cicione C, Muiños-López E, Hermida-Gómez T et al (2013) Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 2013:232896. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147–e147. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cohen-Kaplan V, Livneh I, Avni N et al (2016) p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci USA 113:E7490–E7499. CrossRefPubMedGoogle Scholar
  11. 11.
    Denu RA, Hematti P (2016) Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cell Longev 2016:2989076. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ (2014) The life and fate of mesenchymal stem cells. Front Immunol 5:148. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ejtehadifar M, Shamsasenjan K, Movassaghpour A et al (2015) The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull 5:141–149. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fotia C, Massa A, Boriani F et al (2015) Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells. Cytotechnology 67:1073–1084. CrossRefGoogle Scholar
  15. 15.
    Fuhrmann DC, Brüne B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Galipeau J, Sensébé L (2018) Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell 22:824–833CrossRefGoogle Scholar
  17. 17.
    Hashimoto R, Miyamoto Y, Itoh S et al (2019) Phorbol 12-myristate 13-acetate (PMA) suppresses high Ca2+-enhanced adipogenesis in bone marrow stromal cells. J Physiol Sci 69:741–748. CrossRefPubMedGoogle Scholar
  18. 18.
    Huang X-P, Ludke A, Dhingra S et al (2016) Class II transactivator knockdown limits major histocompatibility complex II expression, diminishes immune rejection, and improves survival of allogeneic bone marrow stem cells in the infarcted heart. FASEB J 30:3069–3082. CrossRefPubMedGoogle Scholar
  19. 19.
    Ishihara A (2019) Mild hyperbaric oxygen: mechanisms and effects. J Physiol Sci 69:573–580. CrossRefPubMedGoogle Scholar
  20. 20.
    Jin SM, Youle RJ (2012) PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci 125:795–799. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kapetanou M, Chondrogianni N, Petrakis S et al (2017) Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radical Biol Med 103:226–235. CrossRefGoogle Scholar
  22. 22.
    Khasawneh RR, Al Sharie AH, Abu-El Rub E et al (2019) Addressing the impact of different fetal bovine serum percentages on mesenchymal stem cells biological performance. Mol Biol Rep. CrossRefPubMedGoogle Scholar
  23. 23.
    Kumar S, Vaidya M (2016) Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27. Mol Cell Biochem 415:29–38. CrossRefPubMedGoogle Scholar
  24. 24.
    Lai R, Tan S, Teh B et al (2012) Proteolytic potential of the msc exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lechanteur C, Briquet A, Giet O et al (2016) Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J Transl Med 14:145. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee H-H, Chang C-C, Shieh M-J et al (2013) Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci Rep 3:2683. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee WY-W, Wang B (2017) Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Translat 9:76–88. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li L, Li L, Zhang Z, Jiang Z (2015) Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway. Acta Biochim Biophys Sin 47:362–367. CrossRefPubMedGoogle Scholar
  29. 29.
    Liu J, Hao H, Xia L et al (2015) Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 10:e0126715–e0126715. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C et al (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 26:869–885. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mahla RS (2016) Stem Cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol 2016:6940283. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Matsuda S, Kitagishi Y, Kobayashi M (2013) Function and characteristics of PINK1 in mitochondria. Oxid Med Cell Longev 2013:601587. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    McWilliams TG, Muqit MM (2017) PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 45:83–91. CrossRefPubMedGoogle Scholar
  34. 34.
    Mouton-Liger F, Jacoupy M, Corvol J-C, Corti O (2017) PINK1/parkin-dependent mitochondrial surveillance: from pleiotropy to parkinson’s disease. Front Mol Neurosci 10:120. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Muhammad G, Xu J, Bulte JWM et al (2017) Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Sci Rep 7:4644. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ochi G, Kanazawa Y, Hyodo K et al (2018) Hypoxia-induced lowered executive function depends on arterial oxygen desaturation. J Physiol Sci 68:847–853. CrossRefPubMedGoogle Scholar
  37. 37.
    Richardson SM, Kalamegam G, Pushparaj PN et al (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80. CrossRefPubMedGoogle Scholar
  38. 38.
    Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sareen N, Sequiera GL, Chaudhary R et al (2018) Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior. Stem Cell Res Ther 9:121. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sequiera GL, Sareen N, Sharma V et al (2018) High throughput screening reveals no significant changes in protein synthesis, processing and degradation machinery during passaging of mesenchymal stem cells. Can J Physiol Pharmacol. CrossRefPubMedGoogle Scholar
  41. 41.
    Singh A, Singh A, Sen D (2016) Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015). Stem Cell Res Ther 7:82. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177. CrossRefPubMedGoogle Scholar
  43. 43.
    Stegeman H, Kaanders JH, Wheeler DL et al (2012) Activation of AKT by hypoxia: a potential target for hypoxic tumors of the head and neck. BMC Cancer 12:463. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Stegeman H, Span PN, Peeters WJ et al (2016) Interaction between hypoxia, AKT and HIF-1 signaling in HNSCC and NSCLC: implications for future treatment strategies. Future Sci OA 2:FSO84. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22. CrossRefPubMedGoogle Scholar
  46. 46.
    Truban D, Hou X, Caulfield TR et al (2017) PINK1, parkin, and mitochondrial quality control: what can we learn about parkinson’s disease pathobiology? J Parkinsons Dis 7:13–29. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tsai C-C, Chen Y-J, Yew T-L et al (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459. CrossRefGoogle Scholar
  48. 48.
    Xing J, Ying Y, Mao C et al (2018) Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat Commun 9:2020. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yeh Y-L, Ting W-J, Shen C-Y et al (2016) Hypoxia augments increased HIF-1α and reduced survival protein p-Akt in gelsolin (GSN)-dependent cardiomyoblast cell apoptosis. Cell Biochem Biophys 74:221–228. CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang C, Lee S, Peng Y et al (2014) PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr Biol 24:1854–1865. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhang Z, Yang C, Shen M et al (2017) Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 8:89. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao Q, Ren H, Han Z (2016) Mesenchymal stem cells: immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother 2:3–20. CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Ramada R. Khasawneh
    • 1
  • Ejlal Abu-El-Rub
    • 1
    • 2
    Email author
  • Abdullah Omar Serhan
    • 3
  • Bashar Omar Serhan
    • 3
  • Hadeel Abu-El-Rub
    • 4
  1. 1.Department of Basic Medical Sciences, Faculty of MedicineYarmouk UniversityIrbidJordan
  2. 2.Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegCanada
  3. 3.Faculty of MedicineJordan University of Science and TechnologyIrbidJordan
  4. 4.Forensic Medicine and Toxicology Department, Faculty of MedicineJordan University of Science and TechnologyIrbidJordan

Personalised recommendations