Advertisement

The Journal of Physiological Sciences

, Volume 69, Issue 6, pp 993–1004 | Cite as

The effects of moderate exercise and overtraining on learning and memory, hippocampal inflammatory cytokine levels, and brain oxidative stress markers in rats

  • Zahra Jahangiri
  • Zahra GholamnezhadEmail author
  • Mahmoud Hosseini
  • Farimah Beheshti
  • Narges Kasraie
Original Paper
  • 105 Downloads

Abstract

To investigate the exercise intensity effects on rats’ memory and learning, animals were divided into control, moderate training (MT), and overtraining (OT) groups. At training last week, learning and memory was assessed using Morris water maze (MWM) and passive avoidance (PA) tests. Finally, the rat’s brains were removed for evaluating oxidative stress and inflammatory cytokines. Overtraining impaired animal’s performance in MWM and PA tests. In MT group, hippocampal levels of interleukin 1 beta (IL-1β) and malondialdehyde (MDA) increased, and thiol contents in hippocampal and cortical tissues decreased compared to control. In OT group, tumor necrosis factor α, IL-1β, and C-reactive protein hippocampal levels increased, MDA and nitric oxide metabolite in hippocampal and cortical tissues increased, thiol contents, catalase and superoxide dismutase activity in hippocampal and cortical tissues decreased compared to control and MT groups. Overtraining might lead to learning and memory impairment by increasing the inflammatory cytokine and oxidative stress markers.

Keywords

Moderate training Overtraining Learning Memory Inflammation Oxidative stress 

Notes

Acknowledgements

The results described in this paper are part of the M.Sc. student’s thesis. The authors would like to thank the Vice Presidency of Research of Mashhad University of Medical Sciences for financial support.

Compliance with ethical standards

Conflict of interests

The authors declare no conflicts of interest in this study.

Supplementary material

12576_2019_719_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 14 kb)

References

  1. 1.
    Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213.  https://doi.org/10.1016/j.bbi.2010.10.015 CrossRefGoogle Scholar
  2. 2.
    Palin K, Bluthe RM, Verrier D, Tridon V, Dantzer R, Lestage J (2004) Interleukin-1beta mediates the memory impairment associated with a delayed type hypersensitivity response to bacillus Calmette-Guerin in the rat hippocampus. Brain Behav Immun 18(3):223–230.  https://doi.org/10.1016/j.bbi.2003.09.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Donzis EJ, Tronson NC (2014) Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences. Neurobiol Learn Mem 115:68–77.  https://doi.org/10.1016/j.nlm.2014.08.008 CrossRefPubMedGoogle Scholar
  4. 4.
    Ravaglia G, Forti P, Maioli F, Brunetti N, Martelli M, Talerico T, Bastagli L, Muscari A, Mariani E (2004) Peripheral blood markers of inflammation and functional impairment in elderly community-dwellers. Exp Gerontol 39(9):1415–1422.  https://doi.org/10.1016/j.exger.2004.06.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Ravaglia G, Forti P, Maioli F, Chiappelli M, Montesi F, Tumini E, Mariani E, Licastro F, Patterson C (2007) Blood inflammatory markers and risk of dementia: the Conselice study of brain aging. Neurobiol Aging 28(12):1810–1820.  https://doi.org/10.1016/j.neurobiolaging.2006.08.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Diniz BS, Mendes-Silva AP, Silva LB, Bertola L, Vieira MC, Ferreira JD, Nicolau M, Bristot G, da Rosa ED, Teixeira AL, Kapczinski F (2018) Oxidative stress markers imbalance in late-life depression. J Psychiatr Res 102:29–33.  https://doi.org/10.1016/j.jpsychires.2018.02.023 CrossRefPubMedGoogle Scholar
  7. 7.
    Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working G (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229.  https://doi.org/10.1016/S0140-6736(12)61031-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21(15):5678–5684CrossRefGoogle Scholar
  9. 9.
    Tillerson JL, Caudle WM, Reveron ME, Miller GW (2003) Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neuroscience 119(3):899–911CrossRefGoogle Scholar
  10. 10.
    Saadati H, Esmaeili-Mahani S, Esmaeilpour K, Nazeri M, Mazhari S, Sheibani V (2015) Exercise improves learning and memory impairments in sleep deprived female rats. Physiol Behav 138:285–291.  https://doi.org/10.1016/j.physbeh.2014.10.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58(3):498–504CrossRefGoogle Scholar
  12. 12.
    Maloyan A, Gulick J, Glabe CG, Kayed R, Robbins J (2007) Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. Proc Natl Acad Sci USA 104(14):5995–6000.  https://doi.org/10.1073/pnas.0609202104 CrossRefPubMedGoogle Scholar
  13. 13.
    Dvorakova-Lorenzova A, Suchanek P, Havel PJ, Stavek P, Karasova L, Valenta Z, Tintera J, Poledne R (2006) The decrease in C-reactive protein concentration after diet and physical activity induced weight reduction is associated with changes in plasma lipids, but not interleukin-6 or adiponectin. Metabolism 55(3):359–365.  https://doi.org/10.1016/j.metabol.2005.09.010 CrossRefPubMedGoogle Scholar
  14. 14.
    Chen YW, Li YT, Chen YC, Li ZY, Hung CH (2012) Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg 114(6):1330–1337.  https://doi.org/10.1213/ANE.0b013e31824c4ed4 CrossRefPubMedGoogle Scholar
  15. 15.
    Ji LL (2002) Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci 959:82–92CrossRefGoogle Scholar
  16. 16.
    Ji LL, Gomez-Cabrera MC, Vina J (2006) Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci 1067:425–435.  https://doi.org/10.1196/annals.1354.061 CrossRefPubMedGoogle Scholar
  17. 17.
    Elsner VR, Basso C, Bertoldi K, de Meireles LC, Cechinel LR, Siqueira IR (2017) Differential effect of treadmill exercise on histone deacetylase activity in rat striatum at different stages of development. J Physiol Sci 67(3):387–394.  https://doi.org/10.1007/s12576-016-0471-2 CrossRefPubMedGoogle Scholar
  18. 18.
    Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42.  https://doi.org/10.1016/j.arr.2007.04.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Halson SL, Jeukendrup AE (2004) Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 34(14):967–981CrossRefGoogle Scholar
  20. 20.
    Gholamnezhad Z, Boskabady MH, Hosseini M, Sankian M, Khajavi Rad A (2014) Evaluation of immune response after moderate and overtraining exercise in Wistar rat. Iran J Basic Med Sci 17(1):1–8PubMedPubMedCentralGoogle Scholar
  21. 21.
    Smith LL (2000) Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 32(2):317–331CrossRefGoogle Scholar
  22. 22.
    Sun LN, Li XL, Wang F, Zhang J, Wang DD, Yuan L, Wu MN, Wang ZJ, Qi JS (2017) High-intensity treadmill running impairs cognitive behavior and hippocampal synaptic plasticity of rats via activation of inflammatory response. J Neurosci Res 95(8):1611–1620.  https://doi.org/10.1002/jnr.23996 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakajima T, Kurano M, Hasegawa T, Takano H, Iida H, Yasuda T, Fukuda T, Madarame H, Uno K, Meguro K, Shiga T, Sagara M, Nagata T, Maemura K, Hirata Y, Yamasoba T, Nagai R (2010) Pentraxin3 and high-sensitive C-reactive protein are independent inflammatory markers released during high-intensity exercise. Eur J Appl Physiol 110(5):905–913.  https://doi.org/10.1007/s00421-010-1572-x CrossRefPubMedGoogle Scholar
  24. 24.
    Belviranlı M, Gökbel H (2006) Acute exercise induced oxidative stress and antioxidant changes. Euro J Gen Med 3(3):126–131.  https://doi.org/10.29333/ejgm/82392 CrossRefGoogle Scholar
  25. 25.
    Clark A, Mach N (2016) Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. J Int Soc Sports Nutr 13:43–64.  https://doi.org/10.1186/s12970-016-0155-6 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim H, Shin MS, Kim SS, Lim BV, Kim HB, Kim YP, Chung JH, Kim EH, Kim CJ (2003) Modulation of immune responses by treadmill exercise in Sprague-Dawley rats. J Sports Med Phys Fit 43(1):99–104Google Scholar
  27. 27.
    Hohl R, Ferraresso RL, De Oliveira RB, Lucco R, Brenzikofer R, De Macedo DV (2009) Development and characterization of an overtraining animal model. Med Sci Sports Exerc 41(5):1155–1163.  https://doi.org/10.1249/MSS.0b013e318191259c CrossRefPubMedGoogle Scholar
  28. 28.
    Vafaee F, Hosseini M, Sadeghinia HR, Hadjzadeh MA, Soukhtanloo M, Rahimi M (2014) The effects of soy extract on spatial learning and memory damage induced by global ischemia in ovariectomised rats. Malays J Med Sci 21(3):19–30PubMedPubMedCentralGoogle Scholar
  29. 29.
    Anaeigoudari A, Shafei MN, Soukhtanloo M, Sadeghnia HR, Reisi P, Beheshti F, Mohebbati R, Mousavi SM, Hosseini M (2015) Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole. Arq Neuropsiquiatr 73(9):784–790.  https://doi.org/10.1590/0004-282x20150121 CrossRefPubMedGoogle Scholar
  30. 30.
    Kaveh M, Eidi A, Nemati A, Boskabady MH (2017) The extract of Portulaca oleracea and its constituent, alpha linolenic acid affects serum oxidant levels and inflammatory cells in sensitized rats. Iran J Allergy Asthma Immunol 16(3):256–270PubMedGoogle Scholar
  31. 31.
    Habeeb AF (1972) [37] Reaction of protein sulfhydryl groups with Ellman’s reagent. Methods Enzymol 25:457–464.  https://doi.org/10.1016/S0076-6879(72)25041-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Madesh M, Balasubramanian KA (1997) A microtiter plate assay for superoxide using MTT reduction method. Indian J Biochem Biophys 34(6):535–539PubMedGoogle Scholar
  33. 33.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  34. 34.
    Hosseini M, Harandizadeh F, Niazmand S, Soukhtanloo M, Faizpour A, Ghasemabady M (2014) The role for nitric oxide on the effects of hydroalcoholic extract of Achillea wilhelmsii on seizure. Avicenna J Phytomed 4(4):251–259PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gholamnezhad Z, Boskabady MH, Hosseini M, Aghaei A (2019) Effect of different loads of exercise and Nigella sativa L. seed extract on serologic and hematologic parameters in rat. Indian J Exp Biol 57:21–29Google Scholar
  36. 36.
    Lira FS, Rosa JC, Pimentel GD, Tarini VA, Arida RM, Faloppa F, Alves ES, do Nascimento CO, Oyama LM, Seelaender M, de Mello MT, Santos RV (2010) Inflammation and adipose tissue: effects of progressive load training in rats. Lipids Health Dis 9:109–119.  https://doi.org/10.1186/1476-511X-9-109 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jahangiri Z, Gholamnezhad Z, Hosseini M (2018) Neuroprotective effects of exercise in rodent models of memory deficit and Alzheimer’s. Metab Brain Dis 34:21–37.  https://doi.org/10.1007/s11011-018-0343-y CrossRefPubMedGoogle Scholar
  38. 38.
    Reisi P, Alaei H, Babri S, Sharifi MR, Mohaddes G (2009) Effects of treadmill running on spatial learning and memory in streptozotocin-induced diabetic rats. Neurosci Lett 455(2):79–83.  https://doi.org/10.1016/j.neulet.2009.03.052 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang XQ, Wang GW (2016) Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats. Life Sci 149:96–103.  https://doi.org/10.1016/j.lfs.2016.02.070 CrossRefPubMedGoogle Scholar
  40. 40.
    Kim K, Sung YH, Seo JH, Lee SW, Lim BV, Lee CY, Chung YR (2015) Effects of treadmill exercise-intensity on short-term memory in the rats born of the lipopolysaccharide-exposed maternal rats. J Exercise Rehabil 11(6):296–302.  https://doi.org/10.12965/jer.150264 CrossRefGoogle Scholar
  41. 41.
    Kennard JA, Woodruff-Pak DS (2012) A comparison of low- and high-impact forced exercise: effects of training paradigm on learning and memory. Physiol Behav 106(4):423–427.  https://doi.org/10.1016/j.physbeh.2012.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ogonovszky H, Berkes I, Kumagai S, Kaneko T, Tahara S, Goto S, Radak Z (2005) The effects of moderate-, strenuous- and over-training on oxidative stress markers, DNA repair, and memory, in rat brain. Neurochem Int 46(8):635–640.  https://doi.org/10.1016/j.neuint.2005.02.009 CrossRefPubMedGoogle Scholar
  43. 43.
    Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT, Kuo YM (2007) Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103(6):2471–2481.  https://doi.org/10.1111/j.1471-4159.2007.04987.x CrossRefPubMedGoogle Scholar
  44. 44.
    Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26(7):552–557.  https://doi.org/10.1055/s-2004-830334 CrossRefPubMedGoogle Scholar
  45. 45.
    Yirmiya R, Winocur G, Goshen I (2002) Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol Learn Mem 78(2):379–389CrossRefGoogle Scholar
  46. 46.
    Palin K, Verrier D, Tridon V, Hurst J, Perry VH, Dantzer R, Lestage J (2004) Influence of the course of brain inflammation on the endogenous IL-1beta/IL-1Ra balance in the model of brain delayed-type hypersensitivity response to bacillus Calmette-Guerin in Lewis rats. J Neuroimmunol 149(1–2):22–30.  https://doi.org/10.1016/j.jneuroim.2003.12.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Rai S, Kamat PK, Nath C, Shukla R (2014) Glial activation and post-synaptic neurotoxicity: the key events in Streptozotocin (ICV) induced memory impairment in rats. Pharmacol Biochem Behav 117:104–117.  https://doi.org/10.1016/j.pbb.2013.11.035 CrossRefPubMedGoogle Scholar
  48. 48.
    Baker JS, Bailey DM, Hullin D, Young I, Davies B (2004) Metabolic implications of resistive force selection for oxidative stress and markers of muscle damage during 30 s of high-intensity exercise. Eur J Appl Physiol 92(3):321–327.  https://doi.org/10.1007/s00421-004-1090-9 CrossRefPubMedGoogle Scholar
  49. 49.
    Nair A, Bonneau RH (2006) Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 171(1–2):72–85.  https://doi.org/10.1016/j.jneuroim.2005.09.012 CrossRefPubMedGoogle Scholar
  50. 50.
    Sugama S, Fujita M, Hashimoto M, Conti B (2007) Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience 146(3):1388–1399.  https://doi.org/10.1016/j.neuroscience.2007.02.043 CrossRefPubMedGoogle Scholar
  51. 51.
    Nakagawa Y, Chiba K (2014) Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel, Switzerland) 7(12):1028–1048.  https://doi.org/10.3390/ph7121028 CrossRefGoogle Scholar
  52. 52.
    Moghaddasi M, Javanmard SH, Reisi P, Tajadini M, Taati M (2014) The effect of regular exercise on antioxidant enzyme activities and lipid peroxidation levels in both hippocampi after occluding one carotid in rat. J Physiol Sci 64(5):325–332.  https://doi.org/10.1007/s12576-014-0322-y CrossRefPubMedGoogle Scholar
  53. 53.
    Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246.  https://doi.org/10.1089/ars.2011.4498 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yu F, Xu B, Song C, Ji L, Zhang X (2013) Treadmill exercise slows cognitive deficits in aging rats by antioxidation and inhibition of amyloid production. NeuroReport 24(6):342–347.  https://doi.org/10.1097/WNR.0b013e3283606c5e CrossRefPubMedGoogle Scholar
  55. 55.
    Hoffman JR, Im J, Kang J, Maresh CM, Kraemer WJ, French D, Nioka S, Kime R, Rundell KW, Ratamess NA, Faigenbaum AD, Chance B (2007) Comparison of low- and high-intensity resistance exercise on lipid peroxidation: role of muscle oxygenation. J Strength Cond Res 21(1):118–122.  https://doi.org/10.1519/R-20526.1 CrossRefPubMedGoogle Scholar
  56. 56.
    Cunningham P, Geary M, Harper R, Pendleton A, Stover S (2005) High intensity sprint training reduces lipid peroxidation in fast-twitch skeletal muscle. J Exerc Physiol Online 8(6):18–25Google Scholar
  57. 57.
    Robertson J, Maughan R, Duthie G, Morrice P (1991) Increased blood antioxidant systems of runners in response to training load. Clin Sci 80(6):611–618CrossRefGoogle Scholar
  58. 58.
    Aguiar AS Jr, Tuon T, Pinho CA, Silva LA, Andreazza AC, Kapczinski F, Quevedo J, Streck EL, Pinho RA (2008) Intense exercise induces mitochondrial dysfunction in mice brain. Neurochem Res 33(1):51–58.  https://doi.org/10.1007/s11064-007-9406-x CrossRefPubMedGoogle Scholar
  59. 59.
    Jahangiri Z, Gholamnezhad Z, Hosseini M (2019) The effects of exercise on hippocampal inflammatory cytokine levels, brain oxidative stress markers and memory impairments induced by lipopolysaccharide in rats. Metab Brain Dis.  https://doi.org/10.1007/s11011-019-00410-7 CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  2. 2.Neurogenic Inflammation Research Center, Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  3. 3.Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Neuroscience Research CenterTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
  5. 5.Department of Physiology, School of Paramedical SciencesTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
  6. 6.Rosenberg School of OptometryUniversity of the Incarnate WordSan AntonioUSA

Personalised recommendations