Advertisement

The Journal of Physiological Sciences

, Volume 69, Issue 6, pp 825–835 | Cite as

Morphological, hormonal, and molecular changes in different maternal tissues during lactation and post-lactation

  • Gustavo Canul-Medina
  • Cristina Fernandez-MejiaEmail author
Review
  • 86 Downloads

Abstract

Milk supply and quality during lactation are critical for progeny survival. Maternal tissues and metabolism, influenced by hormonal changes, undergo modification during lactation to sustain breastfeeding. Two organs that suffer essential adjustment are the mammary glands and the bone; however, renal calcium conservation and calcium absorption from the intestine are also modified. Lactation leads to a transient loss of bone minerals to provide adequate amounts of minerals, including calcium for milk production. Physiological, metabolic, and molecular changes in different tissues participate in providing nutrients for milk production. After weaning, the histological, metabolic, and hormonal modifications that take place in lactation are reverted, and bone remineralization is a central function at this time. This study focuses on the hormonal, metabolic, molecular, and tissue modifications that occur in mammary glands, bone, intestine, and kidneys in the mother during lactation and post-weaning periods.

Keywords

Lactation Mammary gland Bone Intestine 

Notes

Acknowledgements

The authors are grateful to Dr. Karina Pastén-Hidalgo and Dr. Leticia Riverón-Negrete for valuable discussions. This work was supported by Dirección General de Asuntos del Personal Académico, PAPIIT: IN 206617, Universidad Nacional Autónoma de México, and by Fondos Federales, Recursos Fiscales 2017 number 031/2015. Gustavo Canul Medina is a Ph.D. student from the Doctorado en Ciencias Biomédicas at UNAM and had a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT) CVU416286 and from PAPIIT: IN 206617, Universidad Nacional Autónoma de México.

Author contributions

GCM and CFM: revised the literature, and conceived and designed the manuscript and the figures. GCM: drew the figures. CFM: drafted and critically revised the article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Goldstein D (1990) Serum calcium. In: Walker HK, Hall WDHJ (eds) Clinical methods: the history, physical, and laboratory examinations. Butterworths, BostonGoogle Scholar
  3. 3.
    Kovacs CS (2016) Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol Rev 96:449–547CrossRefGoogle Scholar
  4. 4.
    Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028–1042PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Neville MC, McFadden TB, Forsyth I (2002) Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia 7:49–66PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Robinson AM, Girard JR, Williamson DH (1978) Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Measurements of lipogenesis in vivo and plasma hormone concentrations in response to starvation and refeeding. Biochem J 176:343–346PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Burnol AF, Ferre P, Leturque AGJ (1987) Effect of insulin on in vivo glucose utilization in individual tissues of anesthetized lactating rats. Am J Physiol 252:E183–E188PubMedPubMedCentralGoogle Scholar
  9. 9.
    Guyette WA, Matusik RJ, Rosen JM (1979) Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell 17:1013–1023PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Collet C, Joseph R, Nicholas K (1991) A marsupial beta-lactoglobulin gene: characterization and prolactin-dependent expression. J Mol Endocrinol 6:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jagoda CA, Rillema JA (1991) Temporal effect of prolactin on the activities of lactose synthetase, alpha-lactalbumin, and galactosyl transferase in mouse mammary gland explants. Proc Soc Exp Biol Med 197:431–434PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hennighausen L, Westphal C, Sankaran LPC (1991) Regulation of expression of genes for milk proteins. Biotechnology 16:65–74PubMedPubMedCentralGoogle Scholar
  13. 13.
    Waters SB, Rillema JA (1988) Effect of prolactin on enzymes of lipid biosynthesis in mammary gland explants. Am J Physiol 255(4 Pt 1):E567–E571PubMedPubMedCentralGoogle Scholar
  14. 14.
    Oppat CA, Rillema JA (1988) Characteristics of the early effect of prolactin on lactose biosynthesis in mouse mammary gland explants. Proc Soc Exp Biol Med 188:342–345PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Williamson DH (1980) Integration of metabolism in tissues of the lactating rat. FEBS Lett 117:K93–K105PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhao FQ (2014) Biology of glucose transport in the mammary gland. J Mammary Gland Biol Neoplasia 19:3–17PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Camps M, Vilaro S, Testar X, Palacin M, Zorzano A (1994) High and polarized expression of glut1 glucose transporters in epithelial cells from mammary gland: acute down-regulation of glut1 carriers by weaning. Endocrinology 134:924–934PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Shennan DB, Peaker M (2000) Transport of milk constituents by the mammary gland. Physiol Rev 80:925–951PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Shao Y, Wall EH, McFadden TB, Misra Y, Qian X, Blauwiekel R, Kerr D, Zhao FQ (2013) Lactogenic hormones stimulate expression of lipogenic genes but not glucose transporters in bovine mammary gland. Domest Anim Endocrinol 44:57–69PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Laporta J, Peters TL, Merriman KE, Vezina CM, Hernandez LL (2013) Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS One 8:e57847PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC (2007) Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genom 28:323–336CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Kallenberg C, Hyatt HW, Kavazis AN, Hood WR (2017) Change in the lipid transport capacity of the liver and blood during reproduction in rats. Front Physiol 8:517PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CPP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CBB, Birnbaum MJ, Chodosh LA (2006) Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab 4:475–490PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gregerson KA (2006) Prolactin: structure, function, and regulation of secretion. In: Knobil and Neill’s physiology of reproduction, 3ed edn. Academic Press, Cambridge, MA, USA, pp 1703–1726CrossRefGoogle Scholar
  25. 25.
    Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, Telikicherla D, Palapetta SM, Rahiman BA, Venkatesh DD, Urmila KK, Harsha HC, Mathur PP, Prasad TSK, Pandey A, Shemanko C, Chatterjee A (2012) A pathway map of prolactin signaling. J Cell Commun Signal 6:169–173PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hennighausen L, Robinson GW (2005) Information networks in the mammary gland. Nat Rev Mol Cell Biol 6:715–725PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Horseman ND, Gregerson KA (2013) Prolactin actions. J Mol Endocrinol 52:R95–R106PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chen CC, Stairs DB, Boxer RB, Belka GK, Horseman ND, Alvarez JV, Chodosh LA (2012) Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes Dev 26:2154–2168PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lippuner K, Zehnder HJ, Casez JP, Takkinen R, Jaeger P (1996) PTH-related protein is released into the mother’s bloodstream during lactation: evidence for beneficial effects on maternal calcium-phosphate metabolism. J Bone Miner Res 11:1394–1399PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rakopoulos M, Vargas SJ, Gillespie MT, Ho PW, Diefenbach-Jagger H, Leaver DD, Grill V, Moseley JM, Danks JA, Martin TJ (2006) Production of parathyroid hormone-related protein by the rat mammary gland in pregnancy and lactation. Am J Physiol 263:E1077–E1085Google Scholar
  32. 32.
    Rabbani SA, Khalili P, Arakelian A, Pizzi H, Chen G, Goltzman D (2005) Regulation of parathyroid hormone-related peptide by estradiol: effect on tumor growth and metastasis in vitro and in vivo. Endocrinology 146:2885–2894PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yamamoto M, Fisher JE, Thiede MA, Caulfield MP, Rosenblatt M, Duong LT (1992) Concentrations of parathyroid hormone-related protein in rat milk change with duration of lactation and interval from previous suckling, but not with milk calcium. Endocrinology 130:741–747PubMedPubMedCentralGoogle Scholar
  34. 34.
    Thiede MA (1989) The mRNA encoding a parathyroid hormone-like peptide is produced in mammary tissue in response to elevations in serum prolactin. Mol Endocrinol 3:1443–1447PubMedCrossRefGoogle Scholar
  35. 35.
    Laporta J, Peters TL, Weaver SR, Merriman KE, Hernandez LL (2013) Feeding 5-hydroxy-l-tryptophan during the transition from pregnancy to lactation increases calcium mobilization from bone in rats. Domest Anim Endocrinol 44:176–184PubMedCrossRefGoogle Scholar
  36. 36.
    Marshall AM, Hernandez LL, Horseman ND (2014) Serotonin and serotonin transport in the regulation of lactation. J Mammary Gland Biol Neoplasia 19:139–146PubMedCrossRefGoogle Scholar
  37. 37.
    Chiba T, Maeda T, Kudo K (2018) Endogenous serotonin and milk production regulation in the mammary gland. Yakugaku Zasshi 138:829–836PubMedCrossRefGoogle Scholar
  38. 38.
    Reichardt HM, Horsch K, Gröne HJ, Kolbus A, Beug H, Hynes N, Schütz G (2001) Mammary gland development and lactation are controlled by different glucocorticoid receptor activities. Eur J Endocrinol 145:519–527PubMedCrossRefGoogle Scholar
  39. 39.
    Hollanders JJ, Heijboer AC, van der Voorn B, Rotteveel J, Finken MJJ (2017) Nutritional programming by glucocorticoids in breast milk: targets, mechanisms and possible implications. Best Pract Res Clin Endocrinol Metab 31:397–408PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Moran TJ, Gray S, Mikosz CA, Conzen SD (2000) The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res 60:867–872PubMedPubMedCentralGoogle Scholar
  41. 41.
    Schwalm JW, Tucker A (1978) Glucocorticoids in mammary secretions and blood serum during reproduction and lactation and distributions of glucocorticoids, progesterone, and estrogens in fractions of milk. J Dairy Sci 61:550–560PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lechner J, Welte T, Tomasi JK, Bruno P, Cairns C, Gustafsson JÅ, Doppler W (1997) Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of β-casein gene transcription. J Biol Chem 272:20954–20960PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shiu RP, Iwasiow BM (1985) Prolactin-inducible proteins in human breast cancer cells. J Biol Chem 260:11307–11313PubMedPubMedCentralGoogle Scholar
  44. 44.
    Swaab DF, Pool CW, Nijveldt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system. J Neural Transm 36:195–215PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liu X, Shimono K, Zhu LL, Li J, Peng Y, Imam A, Iqbal J, Moonga S, Colaianni G, Su C, Lu Z, Iwamoto M, Pacifici M, Zallone A, Sun L, Zaidi M (2009) Oxytocin deficiency impairs maternal skeletal remodeling. Biochem Biophys Res Commun 388:161–166PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Topper YJ, Freeman CS (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60:1049–1106PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Franceschini R, Ragni N, Cataldi A, Venturini PL, Barreca T, Rolandi E (1990) Influence of suckling on plasma concentrations of somatostatin, insulin and gastrin in lactating women. Int J Gynaecol Obstet 33:321–323PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Widström AM, Winberg J, Werner S, Hamberger B, Eneroth P, Uvnäs-Moberg K (1984) Suckling in lactating women stimulates the secretion of insulin and prolactin without concomitant effects on gastrin, growth hormone, calcitonin, vasopressin or catecholamines. Early Hum Dev 10:115–122PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Eriksson M, Björkstrand E, Smedh U, Alster P, Matthiesen ASU-MK (1994) Role of vagal nerve activity during suckling. Effects on plasma levels of oxytocin, prolactin, VIP, somatostatin, insulin, glucagon, glucose and of milk secretion in lactating rats. Acta Physiol Scand 151:453–459PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Burnol AF, Leturque A, Ferre P, Kande J, Girard J (1986) Increased insulin sensitivity and responsiveness during lactation in rats. Am J Physiol 251:E537–E541PubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee A, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, Grimm S, Hovey RC, Vonderhaar BK, Kahn CR, Torres D, George J, Mohsin S, Allred DC, Hadsell DL (2003) Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 144:2683–2694PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Berlato C, Doppler W (2009) Selective response to insulin versus insulin-like growth factor-I and -II and up-regulation of insulin receptor splice variant B in the differentiated mouse mammary epithelium. Endocrinology 150:2924–2933PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lemay DG, Ballard OA, Hughes MA, Morrow AL, Horseman ND, Lemay DG, Ballard OA, Hughes MA, Morrow AL, Horseman ND, Nommsen-Rivers LA (2013) RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One 8:e67531PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    VanHouten J (2005) Calcium sensing by the mammary gland. J Mammary Gland Biol Neoplasia 10:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Caudarella R, Vescini F, Buffa A, Rizzoli E, Ceccoli L, Francucci CM (2011) Role of calcium-sensing receptor in bone biology. J Endocrinol Invest 34:13–17PubMedPubMedCentralGoogle Scholar
  58. 58.
    VanHouten J, Dann P, McGeoch G, Brown EM, Krapcho K, Neville M, Wysolmerski JJ (2004) The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Inves 113:598–608CrossRefGoogle Scholar
  59. 59.
    Vanhouten JN, Wysolmerski JJ (2013) The calcium-sensing receptor in the breast. Best Pract Res Clin Endocrinol Metab 27:403–414PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl):S131–S139PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Baron R (2008) Anatomy and ultrastructure of bone—histogenesis, growth and remodelling. Endotext, South DartmouthGoogle Scholar
  62. 62.
    Teti A, Zallone A (2009) Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 44:11–16PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tojo Y, Kurabayashi T, Honda A, Yamamoto Y, Yahata T, Takakuwa K, Tanaka K (1998) Bone structural and metabolic changes at the end of pregnancy and lactation in rats. Am J Obstet Gynecol 178:180–185PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2009) Femoral bone mineral density and bone mineral content in bromocriptine-treated pregnant and lactating rats. J Physiol Sci 60:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Thongchote K, Charoenphandhu N, Krishnamra N (2008) High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 58:39–45PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hall JE, Guyton AC (2000) Textbook of medical physiology. Saunders Elsevier, PhiladelphiaGoogle Scholar
  67. 67.
    Ardeshirpour L, Brian S, Dann P, VanHouten J, Wysolmerski J (2010) Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology 151:5591–5601PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bornstein S, Brown SA, Le PT, Wang X, DeMambro V, Horowitz MC, MacDougald O, Baron R, Lotinun S, Karsenty G, Wei W, Ferron M, Kovacs CS, Clemmons D, Wan Y, Rosen CJ (2014) FGF-21 and skeletal remodeling during and after lactation in C57BL/6J mice. Endocrinology 155:3516–3526PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Martin TJ (2016) Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiol Rev 96:831–871PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? J Physiol Sci 62:299–307PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pondel M (2000) Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol 81:405–422PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Foster GV, Baghdiantz A, Kumar MA, Slack E, Soliman HA, MacIntyre I (1964) Thyroid origin of calcitonin. Nature 27:1303–1305CrossRefGoogle Scholar
  73. 73.
    Bucht E, Telenius-Berg M, Lundell G, Sjöberg HE (1987) Immunoextracted calcitonin in milk and plasma from totally thyroidectomized women. Evidence of monomeric calcitonin in plasma during pregnancy and lactation. Acta Endocrinol (Copenh) 113:529–535CrossRefGoogle Scholar
  74. 74.
    Wysolmerski JJ (2010) Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation. Ann N Y Acad Sci 1192:161–169PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wongdee K, Teerapornpuntakit J, Sripong C, Longkunan A, Chankamngoen W, Keadsai C, Kraidith K, Krishnamra N, Charoenphandhu N (2016) Intestinal mucosal changes and upregulated calcium transporter and FGF-23 expression during lactation: contribution of lactogenic hormone prolactin. Arch Biochem Biophys 590:109–117PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Fell BF, Smith KA, Campbell RM (1963) Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J Pathol Bacteriol 85:179–188PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Craft IL (1970) The influence of pregnancy and lactation on the morphology and absorptive capacity of the rat small intestine. Clin Sci 38(287):287–295PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Cripps AW, Williams VJ (1975) The effect of pregnancy and lactation on food intake, gastrointestinal anatomy and the absorptive capacity of the small intestine in the albino rat. Br J Nutr 33:17–32PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Prieto RM, Ferrer M, Rayó JM, Tur JA (1994) Disaccharidase activities in pregnant and lactating rats. Comp Biochem Physiol A Physiol 109:741–747PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2019) Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 11:1–14Google Scholar
  81. 81.
    Muller E, Dowling RH (1981) Prolactin and the small intestine. Effect of hyperprolactinaemia on mucosal structure in the rat. Gut 22:558–565PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Transepithelial calcium transport in prolactin-exposed intestine-like Caco-2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Ca v1.3. J Physiol Sci 60:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Beggs MR, Appel I, Svenningsen P, Skjødt K, Alexander RT, Dimke H (2017) Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol 313:F629–F640PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hodnett DW, DeLuca HF, Jorgensen NA (1992) Intestine, bone, and mammary gland contributions to maternal plasma calcium increase after abrupt weaning. Proc Soc Exp Biol Med 199:332–336PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Watson CJ (2006) Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 8:203PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Walker NI, Bennett RE, Kerr JFR (1989) Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 185:19–32PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Feng Z, Marti A, Jehn B, Altermatt HJ, Chicaiza G, Jaggi R (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 131:1095–1103PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Viña JR, Puertes IR, Viña J (1981) Effect of premature weaning on amino acid uptake by the mammary gland of lactating rats. Biochem J 200:705–708PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Humphreys RC, Hennighausen L (1999) Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis. Cell Growth Differ 10:685–694PubMedPubMedCentralGoogle Scholar
  90. 90.
    Philp JA, Burdon TG, Watson CJ (1996) Differential activation of STATs 3 and 5 during mammary gland development. FEBS Lett 396:77–80PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, Vanzulli S, Kordon EC (2003) Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res 282:35–47PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Abell K, Bilancio A, Clarkson RWE, Tiffen PG, Altaparmakov AI, Burdon TG, Asano T, Vanhaesebroeck B, Watson CJ (2005) Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol 7:392–398PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Tonner E, Barber MC, Travers MT, Logan A, Flint DJ (1997) Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Srivastava S, Matsuda M, Hou Z, Bailey JP, Kitazawa R, Herbst MP, Horseman ND (2003) Receptor activator of NF-kappaB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J Biol Chem 278:46171–46178PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Zaragozá R, Bosch A, García C, Sandoval J, Serna E, Torres L, García-Trevijano ER, Viña JR (2010) Nitric oxide triggers mammary gland involution after weaning: remodelling is delayed but not impaired in mice lacking inducible nitric oxide synthase. Biochem J 428:451–462PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Kim W, Wysolmerski JJ (2016) Calcium-sensing receptor in breast physiology and cancer. Front Physiol 7:440PubMedPubMedCentralGoogle Scholar
  97. 97.
    Miller SC, Bowman BM (2007) Rapid inactivation and apoptosis of osteoclasts in the maternal skeleton during the bone remodeling reversal at the end of lactation. Anat Rec (Hoboken) 290:65–73CrossRefGoogle Scholar
  98. 98.
    Collins JN, Kirby BJ, Woodrow JP, Gagel RF, Rosen CJ, Sims NA, Kovacs CS (2013) Lactating Ctcgrp nulls lose twice the normal bone mineral content due to fewer osteoblasts and more osteoclasts, whereas bone mass is fully restored after weaning in association with up-regulation of Wnt signaling and other novel genes. Endocrinology 154:1400–1413PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ardeshirpour L, Dann P, Adams DJ, Nelson T, Vanhouten J, Horowitz MC, Wysolmerski JJ (2007) Weaning triggers a decrease in receptor activator of nuclear factor-κB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology 148:3875–3886PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kovacs CS (2017) The skeleton is a storehouse of mineral that is plundered during lactation and (fully?) replenished afterwards. J Bone Miner Res 32:676–680PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Piao H, Chu X, Lv W, Zhao Y (2017) Involvement of receptor-interacting protein 140 in estrogen-mediated osteoclasts differentiation, apoptosis, and bone resorption. J Physiol Sci 67:141–150PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Revilla R, Revilla M, Hernández ER, Villa LF, Varela L, Rico H (1995) Evidence that the loss of bone mass induced by GnRH agonists is not totally recovered. Maturitas 22:145–150PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kirby BJ, Ardeshirpour L, Woodrow JP, Wysolmerski JJ, Sims NA, Karaplis AC, Kovacs CS (2011) Skeletal recovery after weaning does not require PTHrP. J Bone Miner Res 26:1242–1251PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kirby BJ, Ma Y, Martin HM, Buckle Favaro KL, Karaplis AC, Kovacs CS (2013) Upregulation of calcitriol during pregnancy and skeletal recovery after lactation do not require parathyroid hormone. J Bone Miner Res 28:1987–2000PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Miller SC, Halloran BP, DeLuca HF, Jee WSS (1982) Role of vitamin D in maternal skeletal changes during pregnancy and lactation: a histomorphometric study. Calcif Tissue Int 34:245–252PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Halloran BP, DeLuca HF (1980) Calcium transport in small intestine during pregnancy and lactation. Am J Physiol 239:E64–E68PubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unidad de Genética de la Nutrición, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México/Instituto Nacional de PediatríaMexico CityMexico

Personalised recommendations