EAE-induced upregulation of mitochondrial MnSOD is associated with increases of mitochondrial SGK1 and Tom20 protein in the mouse kidney cortex

  • Sharanpreet Hira
  • Balamuguran Packialakshmi
  • Xiaoming ZhouEmail author
Original Paper


Our previous demonstration that severe experimental autoimmune encephalomyelitis (EAE) increases MnSOD protein abundance in the mouse kidney cortex led this study to elucidate the underlying mechanism with monensin-treated HEK293 cells as a model. Severe EAE increases mitochondrial protein abundance of SGK1 kinase and Tom20, a critical subunit of mitochondrial translocase in the renal cortex. In HEK293 cells, catalase inhibits monensin-induced increases of mitochondrial SGK1 and Tom20 protein levels. Further, GSK650394, a specific inhibitor of SGK1 reduces monensin-induced increase of mitochondrial protein abundance of Tom20 and MnSOD. Finally, RNAi of Tom20 reduces the effect of monensin on MnSOD. MnSOD and Tom20 physically associate with each other. In conclusion, in HEK293 cells, mitochondrial reactive oxygen species increase protein abundance of mitochondrial SGK1, which leads to a rise of mitochondrial Tom20, resulting in importing MnSOD protein into the mitochondria. This could be a mechanism by which severe EAE up-regulates mitochondrial MnSOD in the kidney cortex.


Na,K-ATPase Reactive oxygen species Experimental autoimmune encephalomyelitis Ouabain Monensin HEK293 cells 



Experimental autoimmune encephalomyelitis


Manganese superoxide dismutase


Reactive oxygen species


Translocase of the outer membrane subunit 20



This work was funded in part by the grant (MED-83-3923) from the collaborative health initiative research program between the National Heart Lung and Blood Institute and the Henry Jackson Foundation for the Advancement of Military Medicine, the National Multiple Sclerosis Society Grant PP3448 and a Uniformed Services University education grant. The authors thank Dr. Louis Pangaro for his help in obtaining the education grant.


The content and views expressed in this article are the sole responsibility of the authors and do not necessarily reflect the views or policies of the Department of Defense or US Government. Mention of trade names, commercial products, or organizations does not imply endorsement by the Department of Defense or US Government.


  1. 1.
    Alvarez de la Rosa D, Coric T, Todorovic N, Shao D, Wang T, Canessa CM (2003) Distribution and regulation of expression of serum- and glucocorticoid-induced kinase-1 in the rat kidney. J Physiol 551:455–466CrossRefGoogle Scholar
  2. 2.
    Cordas E, Naray-Fejes-Toth A, Fejes-Toth G (2007) Subcellular location of serum- and glucocorticoid-induced kinase-1 in renal and mammary epithelial cells. Am J Physiol Cell Physiol 292:C1971–1981CrossRefGoogle Scholar
  3. 3.
    Dudek J, Rehling P, van der Laan M (2013) Mitochondrial protein import: common principles and physiological networks. Biochim Biophys Acta 1833:274–285CrossRefGoogle Scholar
  4. 4.
    Efendiev R, Bertorello AM, Zandomeni R, Cinelli AR, Pedemonte CH (2002) Agonist-dependent regulation of renal Na+, K+-ATPase activity is modulated by intracellular sodium concentration. J Biol Chem 277:11489–11496CrossRefGoogle Scholar
  5. 5.
    Engelsberg A, Kobelt F, Kuhl D (2006) The N-terminus of the serum- and glucocorticoid-inducible kinase Sgk1 specifies mitochondrial localization and rapid turnover. Biochem J 399:69–76CrossRefGoogle Scholar
  6. 6.
    Ferraris JD, Williams CK, Persaud P, Zhang Z, Chen Y, Burg MB (2002) Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration. Proc Natl Acad Sci USA 99:739–744CrossRefGoogle Scholar
  7. 7.
    Gerbeth C, Schmidt O, Rao S, Harbauer AB, Mikropoulou D, Opalinska M, Guiard B, Pfanner N, Meisinger C (2013) Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab 18:578–587CrossRefGoogle Scholar
  8. 8.
    Grey JY, Connor MK, Gordon JW, Yano M, Mori M, Hood DA (2000) Tom20-mediated mitochondrial protein import in muscle cells during differentiation. Am J Physiol Cell Physiol 279:C1393–1400CrossRefGoogle Scholar
  9. 9.
    Guffanti AA, Cohn DE, Kaback HR, Krulwich TA (1981) Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus. Proc Natl Acad Sci USA 78:1481–1484CrossRefGoogle Scholar
  10. 10.
    Hucke S, Eschborn M, Liebmann M, Herold M, Freise N, Engbers A, Ehling P, Meuth SG, Roth J, Kuhlmann T, Wiendl H, Klotz L (2016) Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun 67:90–101CrossRefGoogle Scholar
  11. 11.
    Ip WK, Medzhitov R (2015) Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun 6:6931CrossRefGoogle Scholar
  12. 12.
    Iqbal S, Howard S, LoGrasso PV (2015) Serum- and glucocorticoid-inducible kinase 1 confers protection in cell-based and in in vivo neurotoxin models via the c-Jun N-terminal kinase signaling pathway. Mol Cell Biol 35:1992–2006CrossRefGoogle Scholar
  13. 13.
    Jorg S, Kissel J, Manzel A, Kleinewietfeld M, Haghikia A, Gold R, Muller DN, Linker RA (2016) High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells. Exp Neurol 279:212–222CrossRefGoogle Scholar
  14. 14.
    Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel JA, Corral-Debrinski M (2006) mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 12:1408–1417CrossRefGoogle Scholar
  15. 15.
    Kempson S, Thompson N, Pezzuto L, Glenn Bohlen H (2007) Nitric oxide production by mouse renal tubules can be increased by a sodium-dependent mechanism. Nitric Oxide 17:33–43CrossRefGoogle Scholar
  16. 16.
    Kitada K, Nakano D, Liu Y, Fujisawa Y, Hitomi H, Shibayama Y, Shibata H, Nagai Y, Mori H, Masaki T, Kobori H, Nishiyama A (2012) Oxidative stress-induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt-sensitive rats. PLoS One 7:e41896CrossRefGoogle Scholar
  17. 17.
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–522CrossRefGoogle Scholar
  18. 18.
    Krementsov DN, Case LK, Hickey WF, Teuscher C (2015) Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J 29:3446–3457CrossRefGoogle Scholar
  19. 19.
    Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151–1178CrossRefGoogle Scholar
  20. 20.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381CrossRefGoogle Scholar
  21. 21.
    Li Y, Reuter NP, Li X, Liu Q, Zhang J, Martin RC (2010) Colocalization of MnSOD expression in response to oxidative stress. Mol Carcinog 49:44–53Google Scholar
  22. 22.
    Luk E, Yang M, Jensen LT, Bourbonnais Y, Culotta VC (2005) Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 280:22715–22720CrossRefGoogle Scholar
  23. 23.
    Millar DG, Shore GC (1996) Signal anchor sequence insertion into the outer mitochondrial membrane. Comparison with porin and the matrix protein targeting pathway. J Biol Chem 271:25823–25829CrossRefGoogle Scholar
  24. 24.
    Miranda PM, De Palma G, Serkis V, Lu J, Louis-Auguste MP, McCarville JL, Verdu EF, Collins SM, Bercik P (2018) High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6:57CrossRefGoogle Scholar
  25. 25.
    Packialakshmi B, Zhou X (2018) Experimental autoimmune encephalomyelitis (EAE) up-regulates the mitochondrial activity and manganese superoxide dismutase (MnSOD) in the mouse renal cortex. PLoS One 13:e0196277CrossRefGoogle Scholar
  26. 26.
    Pao AC (2012) SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens 21:534–540CrossRefGoogle Scholar
  27. 27.
    Sherk AB, Frigo DE, Schnackenberg CG, Bray JD, Laping NJ, Trizna W, Hammond M, Patterson JR, Thompson SK, Kazmin D, Norris JD, McDonnell DP (2008) Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic. Cancer Res 68:7475–7483CrossRefGoogle Scholar
  28. 28.
    Sundstrom B, Johansson I, Rantapaa-Dahlqvist S (2015) Interaction between dietary sodium and smoking increases the risk for rheumatoid arthritis: results from a nested case-control study. Rheumatology (Oxford) 54:487–493CrossRefGoogle Scholar
  29. 29.
    Wispe JR, Clark JC, Burhans MS, Kropp KE, Korfhagen TR, Whitsett JA (1989) Synthesis and processing of the precursor for human mangano-superoxide dismutase. Biochim Biophys Acta 994:30–36CrossRefGoogle Scholar
  30. 30.
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo VK (2013) Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496:513–517CrossRefGoogle Scholar
  31. 31.
    Yamahara H, Kishimoto N, Nakata M, Okazaki A, Kimura T, Sonomura K, Matsuoka E, Shiotsu Y, Adachi T, Matsubara H, Iwasaka T, Mori Y (2009) Direct aldosterone action as a profibrotic factor via ROS-mediated SGK1 in peritoneal fibroblasts. Kidney Blood Press Res 32:185–193CrossRefGoogle Scholar
  32. 32.
    Yang X, Yao G, Chen W, Tang X, Feng X, Sun L (2015) Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway. Int Immunopharmacol 29:568–573CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Baaden M, Yan J, Shao J, Qiu S, Wu Y, Ding Y (2010) The molecular recognition mechanism for superoxide dismutase presequence binding to the mitochondrial protein import receptor Tom20 from Oryza sativa involves an LRTLA motif. J Phys Chem B 114:13839–13846CrossRefGoogle Scholar
  34. 34.
    Zhou X, Gallazzini M, Burg MB, Ferraris JD (2010) Contribution of SHP-1 protein tyrosine phosphatase to osmotic regulation of the transcription factor TonEBP/OREBP. Proc Natl Acad Sci USA 107:7072–7077CrossRefGoogle Scholar
  35. 35.
    Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees JR (2017) Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol 317:18–25CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of MedicineUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations