Advertisement

The Journal of Physiological Sciences

, Volume 69, Issue 1, pp 65–77 | Cite as

Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo

  • Kyo Koizumi
  • Masatoshi Inoue
  • Srikanta Chowdhury
  • Haruhiko Bito
  • Akihiro Yamanaka
  • Toru Ishizuka
  • Hiromu YawoEmail author
Original Paper

Abstract

To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input–output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.

Keywords

Optogenetics Ca2+ imaging Two-photon microscopy Self-organization Column Reciprocal inhibition 

Notes

Acknowledgements

We thank K. Fukunaga for the generous gift of rabbit pan CaMKII antiserum and B. Bell for language assistance. This work was supported by a Grant-in-Aid for Scientific Research (No. 25250001 to HY), a Grant-in-Aid for Scientific Research on Innovative Areas (Adaptive Circuit Shift: No. 15H01413 to HY; Comprehensive Brain Science Network; Platforms for Advanced Technologies and Research Resources: No. 16H06276 to HB) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan: http://www.jsps.go.jp/english/e-grants/grants01.html as well as JST, Strategic International Collaborative Research Program, SICORP (to HY): http://www.jst.go.jp/inter/english/sicorp/index.html and CREST (JPMJCR1656 to AY).

Author contributions

KK contributed to conceiving, designing and performing the experiments. KK and HY contributed to data analysis. MI, SC, HB, AY and TI contributed by providing reagents, materials, and analysis tools. KK and HY contributed to data interpretation and manuscript writing. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12576_2018_618_MOESM1_ESM.pdf (31 kb)
Supplementary Figure 1 Circuit diagram for the LED analog regulator. (PDF 30 kb)
12576_2018_618_MOESM2_ESM.pdf (485 kb)
Supplementary Figure 2 Cortical organization. The neurons expressing R-CaMP2 in layer 2/3 and 5 were imaged through a microprism under two-photon microscopy. Scale, 100 µm. (PDF 485 kb)
12576_2018_618_MOESM3_ESM.avi (1.8 mb)
Supplementary Video 1 A sample R-CaMP2 fluorescence image at layer 5 through the prism (the same region shown in Figure 3A). The targets of photostimulation, A, B, and C are overlaid (circles). The illuminated targets are colored in blue in the frame capturing the LED-dependent noise at the instant of photostimulation (AVI 1836 kb)

References

  1. 1.
    Harris KD, Mrsic-Flogel TD (2013) Cortical connectivity and sensory coding. Nature 503:51–58.  https://doi.org/10.1038/nature12654 CrossRefGoogle Scholar
  2. 2.
    Zeng H, Sanes JR (2017) Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 18:530–546.  https://doi.org/10.1038/nrn.2017.85 CrossRefGoogle Scholar
  3. 3.
    Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct. 212:3–17.  https://doi.org/10.1007/s00429-007-0144-2 CrossRefGoogle Scholar
  4. 4.
    Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154.  https://doi.org/10.1113/jphysiol.1962.sp006837 CrossRefGoogle Scholar
  5. 5.
    Hubel DH, Wiesel TN (1977) Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci 198:1–59.  https://doi.org/10.1098/rspb.1977.0085 CrossRefGoogle Scholar
  6. 6.
    Miller KD, Keller JB, Stryker MP (1989) Ocular dominance column development: analysis and simulation. Science 245:605–615.  https://doi.org/10.1126/science.2762813 CrossRefGoogle Scholar
  7. 7.
    Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303:1678–1681.  https://doi.org/10.1126/science.1091031 CrossRefGoogle Scholar
  8. 8.
    Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72:231–243.  https://doi.org/10.1016/j.neuron.2011.09.027 CrossRefGoogle Scholar
  9. 9.
    Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383.  https://doi.org/10.1038/nature11312 CrossRefGoogle Scholar
  10. 10.
    Kim K, Kim JH, Song YH, Lee SH (2017) Functional dissection of inhibitory microcircuits in the visual cortex. Neurosci Res 116:70–76.  https://doi.org/10.1016/j.neures.2016.09.003 CrossRefGoogle Scholar
  11. 11.
    Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807.  https://doi.org/10.1038/nrn1519 CrossRefGoogle Scholar
  12. 12.
    Kubota Y, Karube F, Nomura M, Kawaguchi Y (2016) The diversity of cortical inhibitory synapses. Front Neural Circuits. 10:27.  https://doi.org/10.3389/fncir.2016.00027 CrossRefGoogle Scholar
  13. 13.
    Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, Kahou GA, Berger TK, Bilgili A, Buncic N, Chalimourda A, Chindemi G, Courcol JD, Delalondre F, Delattre V, Druckmann S, Dumusc R, Dynes J, Eilemann S, Gal E, Gevaert ME, Ghobril JP, Gidon A, Graham JW, Gupta A, Haenel V, Hay E, Heinis T, Hernando JB, Hines M, Kanari L, Keller D, Kenyon J, Khazen G, Kim Y, King JG, Kisvarday Z, Kumbhar P, Lasserre S, Le Bé JV, Magalhães BR, Merchán-Pérez A, Meystre J, Morrice BR, Muller J, Muñoz-Céspedes A, Muralidhar S, Muthurasa K, Nachbaur D, Newton TH, Nolte M, Ovcharenko A, Palacios J, Pastor L, Perin R, Ranjan R, Riachi I, Rodríguez JR, Riquelme JL, Rössert C, Sfyrakis K, Shi Y, Shillcock JC, Silberberg G, Silva R, Tauheed F, Telefont M, Toledo-Rodriguez M, Tränkler T, Van Geit W, Díaz JV, Walker R, Wang Y, Zaninetta SM, DeFelipe J, Hill SL, Segev I, Schürmann F (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–492.  https://doi.org/10.1016/j.cell.2015.09.029 CrossRefGoogle Scholar
  14. 14.
    Reid RC (2012) From functional architecture to functional connectomics. Neuron 75:209–217.  https://doi.org/10.1016/j.neuron.2012.06.031 CrossRefGoogle Scholar
  15. 15.
    Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A (2016) The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 6:29480.  https://doi.org/10.1038/srep29480 CrossRefGoogle Scholar
  16. 16.
    Kawashima T, Kitamura K, Suzuki K, Nonaka M, Kamijo S, Takemoto-Kimura S, Kano M, Okuno H, Ohki K, Bito H (2013) Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE. Nat Methods 10:889–895.  https://doi.org/10.1038/nmeth.2559 CrossRefGoogle Scholar
  17. 17.
    Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178.  https://doi.org/10.1038/nature10360 CrossRefGoogle Scholar
  18. 18.
    Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12:64–70.  https://doi.org/10.1038/nmeth.3185 CrossRefGoogle Scholar
  19. 19.
    Nagai T, Horikawa K, Saito K, Matsuda T (2014) Genetically encoded Ca2+ indicators; expanded affinity range, color hue and compatibility with optogenetics. Front Mol Neurosci 7:90.  https://doi.org/10.3389/fnmol.2014.00090 CrossRefGoogle Scholar
  20. 20.
    Antic SD, Empson RM, Knöpfel T (2016) Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 116:135–152.  https://doi.org/10.1152/jn.00226.2016 CrossRefGoogle Scholar
  21. 21.
    Storace D, Sepehri Rad M, Kang B, Cohen LB, Hughes T, Baker BJ (2016) Toward better genetically encoded sensors of membrane potential. Trends Neurosci 39:277–289.  https://doi.org/10.1016/j.tins.2016.02.005 CrossRefGoogle Scholar
  22. 22.
    Sepehri Rad M, Choi Y, Cohen LB, Baker BJ, Zhong S, Storace DA, Braubach OR (2017) Voltage and calcium imaging of brain activity. Biophys J 113:2160–2167.  https://doi.org/10.1016/j.bpj.2017.09.040 CrossRefGoogle Scholar
  23. 23.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268.  https://doi.org/10.1038/nn1525 CrossRefGoogle Scholar
  24. 24.
    Ishizuka T, Kakuda M, Araki R, Yawo H (2006) Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci Res 54:85–94.  https://doi.org/10.1016/j.neures.2005.10.009 CrossRefGoogle Scholar
  25. 25.
    Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34.  https://doi.org/10.1016/j.neuron.2011.06.004 CrossRefGoogle Scholar
  26. 26.
    Yawo H, Asano T, Sakai S, Ishizuka T (2013) Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 55:474–490.  https://doi.org/10.1111/dgd.12053 CrossRefGoogle Scholar
  27. 27.
    Oertner TG, Helmchen F, de Lecea L, Beck H, Konnerth A, Kaupp B, Knöpfel T, Yawo H, Häusser M (2013) Optogenetic analysis of mammalian neural circuits. In: Hegemann P, Sigrist S (eds) Optogenetics, Dahlem Workshop Reports. De Gruyter, Berlin, pp 109–126Google Scholar
  28. 28.
    Yawo H, Egawa R, Hososhima S, Wen L (2015) General description: future prospects of optogenetics. In: Kandori H, Yawo H, Koizumi A (eds) Optogenetics: light-sensing proteins and their applications. Springer, Tokyo, pp 111–132CrossRefGoogle Scholar
  29. 29.
    Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4:S143–S156.  https://doi.org/10.1088/1741-2560/4/3/S02 CrossRefGoogle Scholar
  30. 30.
    Packer AM, Russell LE, Dalgleish HW, Häusser M (2015) Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 12:140–146.  https://doi.org/10.1038/nmeth.3217 CrossRefGoogle Scholar
  31. 31.
    Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R (2016) Imprinting and recalling cortical ensembles. Science 353:691–694.  https://doi.org/10.1126/science.aaf7560 CrossRefGoogle Scholar
  32. 32.
    Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945.  https://doi.org/10.1073/pnas.1936192100 CrossRefGoogle Scholar
  33. 33.
    Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A. 106:12317–12322.  https://doi.org/10.1073/pnas.0905852106 CrossRefGoogle Scholar
  34. 34.
    Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814.  https://doi.org/10.1016/j.bpj.2008.11.034 CrossRefGoogle Scholar
  35. 35.
    Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY, Emiliani V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854.  https://doi.org/10.1038/nmeth.1505 CrossRefGoogle Scholar
  36. 36.
    Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34.  https://doi.org/10.1038/nmeth.f.325 CrossRefGoogle Scholar
  37. 37.
    Chaigneau E, Ronzitti E, Gajowa MA, Soler-Llavina GJ, Tanese D, Brureau AY, Papagiakoumou E, Zeng H, Emiliani V (2016) Two-photon holographic stimulation of ReaChR. Front Cell Neurosci 10:234.  https://doi.org/10.3389/fncel.2016.00234 CrossRefGoogle Scholar
  38. 38.
    Ronzitti E, Conti R, Zampini V, Tanese D, Foust AJ, Klapoetke N, Boyden ES, Papagiakoumou E, Emiliani V (2017) Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos. J Neurosci 37:10679–10689.  https://doi.org/10.1523/JNEUROSCI.1246-17.2017 CrossRefGoogle Scholar
  39. 39.
    Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wölfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913.  https://doi.org/10.1016/j.neuron.2013.07.052 CrossRefGoogle Scholar
  40. 40.
    Hososhima S, Yuasa H, Ishizuka T, Hoque MR, Yamashita T, Yamanaka A, Sugano E, Tomita H, Yawo H (2015) Near-infrared (NIR) up-conversion optogenetics. Sci Rep 5:16533.  https://doi.org/10.1038/srep16533 CrossRefGoogle Scholar
  41. 41.
    Sakai S, Ueno K, Ishizuka T, Yawo H (2013) Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector. Neurosci Res 75:59–64.  https://doi.org/10.1016/j.neures.2012.03.009 CrossRefGoogle Scholar
  42. 42.
    Favre-Bulle IA, Preece D, Nieminen TA, Heap LA, Scott EK, Rubinsztein-Dunlop H (2015) Scattering of sculpted light in intact brain tissue, with implications for optogenetics. Sci Rep 5:11501.  https://doi.org/10.1038/srep11501 CrossRefGoogle Scholar
  43. 43.
    Roy A, Osik JJ, Ritter NJ, Wang S, Shaw JT, Fiser J, Van Hooser SD (2016) Optogenetic spatial and temporal control of cortical circuits on a columnar scale. J Neurophysiol 115:1043–1062.  https://doi.org/10.1152/jn.00960.2015 CrossRefGoogle Scholar
  44. 44.
    Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, Chen W, Ni X, Lin JK, Yang J, Xu XH, Shen WL (2017) A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci USA 114:2042–2047.  https://doi.org/10.1073/pnas.1616255114 CrossRefGoogle Scholar
  45. 45.
    Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234.  https://doi.org/10.1038/nn.2247 CrossRefGoogle Scholar
  46. 46.
    Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278.  https://doi.org/10.1021/bi901634p CrossRefGoogle Scholar
  47. 47.
    Hososhima S, Sakai S, Ishizuka T, Yawo H (2015) Kinetic evaluation of photosensitivity in bi-stable variants of chimeric channelrhodopsins. PLoS One 10:e0119558.  https://doi.org/10.1371/journal.pone.0119558 CrossRefGoogle Scholar
  48. 48.
    Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722CrossRefGoogle Scholar
  49. 49.
    Maruoka H, Kubota K, Kurokawa R, Tsuruno S, Hosoya T (2011) Periodic organization of a major subtype of pyramidal neurons in neocortical layer V. J Neurosci 31:18522–18542.  https://doi.org/10.1523/JNEUROSCI.3117-11.2011 CrossRefGoogle Scholar
  50. 50.
    Maruoka H, Nakagawa N, Tsuruno S, Sakai S, Yoneda T, Hosoya T (2017) Lattice system of functionally distinct cell types in the neocortex. Science 358:610–615.  https://doi.org/10.1126/science.aam6125 CrossRefGoogle Scholar
  51. 51.
    Yoshimura Y, Dantzker JL, Callaway EM (2005) Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–873.  https://doi.org/10.1038/nature03252 CrossRefGoogle Scholar
  52. 52.
    Oberlaender M, Boudewijns ZS, Kleele T, Mansvelder HD, Sakmann B, de Kock CP (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci USA 108:4188–4193.  https://doi.org/10.1073/pnas.1100647108 CrossRefGoogle Scholar
  53. 53.
    Ko H, Cossell L, Baragli C, Antolik J, Clopath C, Hofer SB, Mrsic-Flogel TD (2013) The emergence of functional microcircuits in visual cortex. Nature 496:96–100.  https://doi.org/10.1038/nature12015 CrossRefGoogle Scholar
  54. 54.
    Ishikawa AW, Komatsu Y, Yoshimura Y (2014) Experience-dependent emergence of fine-scale networks in visual cortex. J Neurosci 34:12576–12586.  https://doi.org/10.1523/JNEUROSCI.1346-14.2014 CrossRefGoogle Scholar
  55. 55.
    Narayanan RT, Udvary D, Oberlaender M (2017) Cell type-specific structural organization of the six layers in rat barrel cortex. Front Neuroanat 11:91.  https://doi.org/10.3389/fnana.2017.00091 CrossRefGoogle Scholar
  56. 56.
    Feldmeyer D (2012) Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6:24.  https://doi.org/10.3389/fnana.2012.00024 CrossRefGoogle Scholar
  57. 57.
    Naka A, Adesnik H (2016) Inhibitory circuits in cortical layer 5. Front Neural Circuits 10:35.  https://doi.org/10.3389/fncir.2016.00035 CrossRefGoogle Scholar
  58. 58.
    Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115.  https://doi.org/10.1016/j.neures.2006.02.008 CrossRefGoogle Scholar
  59. 59.
    Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437.  https://doi.org/10.1038/nrn2151 CrossRefGoogle Scholar
  60. 60.
    Le Bé JV, Silberberg G, Wang Y, Markram H (2007) Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cereb Cortex 17:2204–2213.  https://doi.org/10.1093/cercor/bhl127 CrossRefGoogle Scholar
  61. 61.
    Brown SP, Hestrin S (2009) Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–1136.  https://doi.org/10.1038/nature07658 CrossRefGoogle Scholar
  62. 62.
    Sato TR, Svoboda K (2010) The functional properties of barrel cortex neurons projecting to the primary motor cortex. J Neurosci 30:4256–4260.  https://doi.org/10.1523/JNEUROSCI.3774-09.2010 CrossRefGoogle Scholar
  63. 63.
    Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405.  https://doi.org/10.1523/JNEUROSCI.0252-06.2006 CrossRefGoogle Scholar
  64. 64.
    Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically identified GABAergic cells in the rat frontal cortex. Neuroscience 85:677–701.  https://doi.org/10.1016/S0306-4522(97)00685-4 CrossRefGoogle Scholar
  65. 65.
    Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278.  https://doi.org/10.1126/science.287.5451.273 CrossRefGoogle Scholar
  66. 66.
    Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, Markram H (2004) Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol 561:65–90.  https://doi.org/10.1113/jphysiol.2004.073353 CrossRefGoogle Scholar
  67. 67.
    Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 53(5):735–746.  https://doi.org/10.1016/j.neuron.2007.02.012 CrossRefGoogle Scholar
  68. 68.
    Bush P, Sejnowski T (1996) Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. J Comput Neurosci 3:91–110 PMID:8840227 CrossRefGoogle Scholar
  69. 69.
    Bush PC, Mainen ZF (2015) Columnar architecture improves noise robustness in a model cortical network. PLoS ONE 10:e0119072.  https://doi.org/10.1371/journal.pone.0119072 CrossRefGoogle Scholar
  70. 70.
    Otsuka T, Kawaguchi Y (2009) Cortical inhibitory cell types differentially form intralaminar and interlaminar subnetworks with excitatory neurons. J Neurosci 29:10533–10540.  https://doi.org/10.1523/JNEUROSCI.2219-09.2009 CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Developmental Biology and NeuroscienceTohoku University Graduate School of Life SciencesSendaiJapan
  2. 2.Department of Neurochemistry, Graduate School of MedicineUniversity of TokyoTokyoJapan
  3. 3.Core Research for Evolutional Science and Technology (CREST)Japan Science and Technology AgencyTokyoJapan
  4. 4.Department of Neuroscience II, Research Institute of Environmental MedicineNagoya UniversityNagoyaJapan
  5. 5.Center for NeuroscienceTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations