The Journal of Physiological Sciences

, Volume 69, Issue 1, pp 13–21 | Cite as

Isoflurane anesthesia does not affect spinal cord neurovascular coupling: evidence from decerebrated rats

  • Thierry Paquette
  • Hugues Leblond
  • Mathieu PichéEmail author
Original Paper


Neurological examination remains the primary clinical investigation in patients with spinal cord injury. However, neuroimaging methods such as functional magnetic resonance imaging (fMRI) are promising tools for following functional changes in the course of injury, disease and rehabilitation. However, the relationship between neuronal activity and blood flow in the spinal cord on which fMRI relies has been largely overlooked. The objective of this study was to examine neurovascular coupling in the spinal cord of decerebrated rats during electrical stimulation of the sciatic nerve with and without isoflurane anesthesia (1.2%). Local field potentials (LFP) and spinal cord blood flow (SCBF) were recorded simultaneously in the lumbosacral enlargement. Isoflurane did not significantly alter LFP (p = 0.53) and SCBF (p = 0.57) amplitude. Accordingly, neurovascular coupling remained comparable with or without isoflurane anesthesia (p = 0.39). These results support the use of isoflurane in rodents to investigate nociceptive functions of the spinal cord using fMRI.


Spinal cord Neurovascular coupling Pain Nociception Blood flow Local field potential 



This project was funded by the Natural Science and Engineering Research Council (NSERC) of Canada (Grant Numbers: 402176 (MP); 05403 (HL)). TP was supported by scholarships from the NSERC, the department of anatomy (UQTR) and the “Fonds de Recherche du Québec en Santé” (FRQS). The contribution of Mathieu Piché was supported by the UQTR research chair in pain neurophysiology, the “Fondation de Recherche en Chiropratique du Québec” and the FRQS.

Author contribution

TP contributed to all aspects of the research. HL contributed to all aspects of the research. MP contributed to all aspects of the research and obtained funding for the study.


This study was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (Grant Numbers: 402176 (MP); 05403 (HL)).

Compliance with ethical standards

Conflict of interest

Thierry Paquette reports no financial or other relationship that may lead to any conflict of interest. Hugues Leblond reports no financial or other relationship that may lead to any conflict of interest. Mathieu Piché reports no financial or other relationship that may lead to any conflict of interest.

Ethical approval

All experiments followed “Guiding Principles for the Care and Use of Animals in the Field of Physiological Sciences” and were approved by the animal care committee of Université du Québec à Trois-Rivières, in accordance with the Canadian Council on Animal Care.


  1. 1.
    Wheeler-Kingshott CA, Stroman PW, Schwab JM, Bacon M, Bosma R, Brooks J, Cadotte DW, Carlstedt T, Ciccarelli O, Cohen-Adad J, Curt A, Evangelou N, Fehlings MG, Filippi M, Kelley BJ, Kollias S, Mackay A, Porro CA, Smith S, Strittmatter SM, Summers P, Thompson AJ, Tracey I (2014) The current state-of-the-art of spinal cord imaging: applications. Neuroimage 84:1082–1093CrossRefGoogle Scholar
  2. 2.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872CrossRefGoogle Scholar
  3. 3.
    Piché M, Paquette T, Leblond H (2017) Tight neurovascular coupling in the spinal cord during nociceptive stimulation in intact and spinal rats. Neuroscience 355:1–8CrossRefGoogle Scholar
  4. 4.
    Porszasz R, Beckmann N, Bruttel K, Urban L, Rudin M (1997) Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Proc Natl Acad Sci USA 94(10):5034–5039CrossRefGoogle Scholar
  5. 5.
    Yang P-F, Wang F, Chen LM (2015) Differential fMRI activation patterns to noxious heat and tactile stimuli in the primate spinal cord. J Neurosci 35(29):10493–10502CrossRefGoogle Scholar
  6. 6.
    Iida H, Ohata H, Iida M, Watanabe Y, Dohi S (1998) Isoflurane and sevoflurane induce vasodilation of cerebral vessels via ATP-sensitive K+ channel activation. Anesthesiology 89(4):954–960CrossRefGoogle Scholar
  7. 7.
    Farber NE, Harkin CP, Niedfeldt J, Hudetz AG, Kampine JP, Schmeling WT (1997) Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 87(5):1191–1198CrossRefGoogle Scholar
  8. 8.
    Olsen KS, Henriksen L, Owen-Falkenberg A, Dige-Petersen H, Rosenorn J, Chraemmer-Jorgensen B (1994) Effect of 1 or 2 MAC isoflurane with or without ketanserin on cerebral blood flow autoregulation in man. Br J Anaesth 72(1):66–71CrossRefGoogle Scholar
  9. 9.
    Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26(6):1014–1019CrossRefGoogle Scholar
  10. 10.
    Newberg LA, Milde JH, Michenfelder JD (1983) The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59(1):23–28CrossRefGoogle Scholar
  11. 11.
    Masamoto K, Fukuda M, Vazquez A, Kim SG (2009) Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur J Neurosci 30(2):242–250CrossRefGoogle Scholar
  12. 12.
    Shimoji MDK, Fujiwara PDN, Fukuda MDS, Denda MDS, Takada MDT, Maruyama MDY (1990) Effects of isoflurane on spinal inhibitory potentials. Anesthesiology 72(5):851–857CrossRefGoogle Scholar
  13. 13.
    Collins JG, Kendig JJ, Mason P (1995) Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci 18(12):549–553CrossRefGoogle Scholar
  14. 14.
    Meehan CF, Mayr KA, Manuel M, Nakanishi ST, Whelan PJ (2017) Decerebrate mouse model for studies of the spinal cord circuits. Nat Protoc 12(4):732–747CrossRefGoogle Scholar
  15. 15.
    Dobson KL, Harris J (2012) A detailed surgical method for mechanical decerebration of the rat. Exp Physiol 97(6):693–698CrossRefGoogle Scholar
  16. 16.
    Jeffrey-Gauthier R, Guillemot JP, Piche M (2013) Neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat. Pain 154(8):1434–1441CrossRefGoogle Scholar
  17. 17.
    Uchida S, Bois S, Guillemot J-P, Leblond H, Piché M (2017) Systemic blood pressure alters cortical blood flow and neurovascular coupling during nociceptive processing in the primary somatosensory cortex of the rat. Neuroscience 343:250–259CrossRefGoogle Scholar
  18. 18.
    DeJong RH, Robles R, Morikawa KI (1968) Actions of immobilizing drugs on synaptic transmission. Exp Neurol 21(2):213–218CrossRefGoogle Scholar
  19. 19.
    Yates BJ, Thompson FJ, Mickle JP (1982) Origin and properties of spinal cord field potentials. Neurosurgery 11(3):439–450CrossRefGoogle Scholar
  20. 20.
    Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D (2012) Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab 32(7):1277–1309CrossRefGoogle Scholar
  21. 21.
    Fredriksson I, Larsson M, Stromberg T (2009) Measurement depth and volume in laser Doppler flowmetry. Microvasc Res 78(1):4–13CrossRefGoogle Scholar
  22. 22.
    Jinks SL, Martin JT, Carstens E, Jung SW, Antognini JF (2003) Peri-MAC depression of a nociceptive withdrawal reflex is accompanied by reduced dorsal horn activity with halothane but not isoflurane. Anesthesiology 98(5):1128–1138CrossRefGoogle Scholar
  23. 23.
    Cuellar JM, Dutton RC, Antognini JF, Carstens E (2005) Differential effects of halothane and isoflurane on lumbar dorsal horn neuronal windup and excitability. BJA Br J Anaesth 94(5):617–625CrossRefGoogle Scholar
  24. 24.
    Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420CrossRefGoogle Scholar
  25. 25.
    Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640CrossRefGoogle Scholar
  26. 26.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157CrossRefGoogle Scholar
  27. 27.
    Li C-X, Patel S, Wang DJJ, Zhang X (2014) Effect of high dose isoflurane on cerebral blood flow in macaque monkeys. Magn Reson Imaging 32(7):956–960CrossRefGoogle Scholar
  28. 28.
    Matta BF, Heath KJ, Tipping K, Summors AC (1999) Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 91(3):677–680CrossRefGoogle Scholar
  29. 29.
    Hoffman WE, Edelman G, Kochs E, Werner C, Segil L, Albrecht RF (1991) Cerebral autoregulation in awake versus isoflurane-anesthetized rats. Anesth Analg 73(6):753–757CrossRefGoogle Scholar
  30. 30.
    Handwerker DA, Ollinger JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4):1639–1651CrossRefGoogle Scholar
  31. 31.
    Martin C, Martindale J, Berwick J, Mayhew J (2006) Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32(1):33–48CrossRefGoogle Scholar
  32. 32.
    Pisauro MA, Dhruv NT, Carandini M, Benucci A (2013) Fast hemodynamic responses in the visual cortex of the awake mouse. J Neurosci 33(46):18343–18351CrossRefGoogle Scholar
  33. 33.
    Shtoyerman E, Arieli A, Slovin H, Vanzetta I, Grinvald A (2000) Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J Neurosci 20(21):8111–8121CrossRefGoogle Scholar
  34. 34.
    Kobrine AI, Doyle TF, Newby N, Rizzoli HV (1976) Preserved autoregulation in the rhesus spinal cord after high cervical cord section. J Neurosurg 44(4):425–428CrossRefGoogle Scholar
  35. 35.
    Kobrine AI, Doyle TF, Rizzoli HV (1976) Spinal cord blood flow as affected by changes in systemic arterial blood pressure. J Neurosurg 44(1):12–15CrossRefGoogle Scholar
  36. 36.
    Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM (1977) Regulation of total and regional spinal cord blood flow. Circ Res 41(1):128–134CrossRefGoogle Scholar
  37. 37.
    Sato M, Pawlik G, Heiss WD (1984) Comparative studies of regional CNS blood flow autoregulation and responses to CO2 in the cat. Effects of altering arterial blood pressure and PaCO2 on rCBF of cerebrum, cerebellum, and spinal cord. Stroke 15(1):91–97CrossRefGoogle Scholar
  38. 38.
    Hickey R, Albin MS, Bunegin L, Gelineau J (1986) Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain? Stroke 17(6):1183–1189CrossRefGoogle Scholar
  39. 39.
    Rubinstein A, Arbit E (1990) Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery 27(6):882–886CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChiropracticUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.CogNAC Research GroupUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  3. 3.Department of AnatomyUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations