Advertisement

The Journal of Physiological Sciences

, Volume 68, Issue 4, pp 521–530 | Cite as

Effects of voluntary exercise on antiretroviral therapy-induced neuropathic pain in mice

  • Hong Ye
  • Xingguang Du
  • Qingli HuaEmail author
Original Paper

Abstract

Antiretroviral therapy (ART) often results in painful peripheral neuropathy. Given that voluntary exercise has been shown to be beneficial in terms of modulating pain-like behaviors in various animal models of peripheral neuropathy, we have investigated the effects of voluntary wheel running on neuropathic pain induced by chronic ART. We first established an animal model of peripheral neuropathy induced by chronic 2′,3′-dideoxycytidine (ddC) treatment. We showed that mice receiving ddC (3 mg/kg/day) had increased mechanical and thermal sensitivity at 9 weeks after the onset of the treatment. We also found that voluntary wheel running attenuated or delayed the onset of ddC-induced peripheral neuropathy. This phenomenon was associated with the attenuation of dorsal root ganglion nociceptive neuron membrane excitability and reduction in the expression of the transient receptor potential cation channel subfamily V member 1 (TRPV1). Taken together, these results suggest that voluntary exercise is an effective strategy by which ART-induced peripheral neuropathy can be alleviated.

Keywords

Antiretroviral therapy Peripheral neuropathy Dorsal root ganglion Nociceptive neuron TRPV1 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human/animal participants

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Funding

None.

References

  1. 1.
    Larue F, Fontaine A, Colleau SM (1997) Underestimation and undertreatment of pain in HIV disease: multicentre study. BMJ 314:23–28CrossRefGoogle Scholar
  2. 2.
    Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, Hewitt DJ, Loeser JD, Max MB, Saltarelli M, Schmader KE, Stein C, Thompson D, Turk DC, Wallace MS, Watkins LR, Weinstein SM (2003) Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 60:1524–1534CrossRefGoogle Scholar
  3. 3.
    Pillay P, Wadley AL, Cherry CL, Karstaedt AS, Kamerman PR (2015) Pharmacological treatment of painful HIV-associated sensory neuropathy. S Afr Med J 105:769–772. doi: 10.7196/SAMJnew.7908 CrossRefPubMedGoogle Scholar
  4. 4.
    Cherry CL, Wadley AL, Kamerman PR (2012) Painful HIV-associated sensory neuropathy. Pain Manag 2:543–552. doi: 10.2217/pmt.12.67 CrossRefPubMedGoogle Scholar
  5. 5.
    Robinson-Papp J, Morgello S, Vaida F, Fitzsimons C, Simpson DM, Elliott KJ, Al-Lozi M, Gelman BB, Clifford D, Marra CM, McCutchan JA, Atkinson JH, Dworkin RH, Grant I, Ellis R (2010) Association of self-reported painful symptoms with clinical and neurophysiologic signs in HIV-associated sensory neuropathy. Pain 151:732–736CrossRefGoogle Scholar
  6. 6.
    Fichtenbaum CJ, Clifford DB, Powderly WG (1995) Risk factors for dideoxynucleoside-induced toxic neuropathy in patients with the human immunodeficiency virus infection. J Acquir Immune Defic Syndr Hum Retrovirol 10:169–174CrossRefGoogle Scholar
  7. 7.
    Moyle GJ, Sadler M (1998) Peripheral neuropathy with nucleoside antiretrovirals: risk factors, incidence and management. Drug Saf 19:481–494CrossRefGoogle Scholar
  8. 8.
    Dalakas MC (2001) Peripheral neuropathy and antiretroviral drugs. J Peripher Nerv Syst 6:14–20CrossRefGoogle Scholar
  9. 9.
    Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice AS, Stacey BR, Treede RD, Turk DC, Wallace MS (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237–251CrossRefGoogle Scholar
  10. 10.
    Abrams DI, Jay CA, Shade SB, Vizoso H, Reda H, Press S, Kelly ME, Rowbotham MC, Petersen KL (2007) Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 68:515–521CrossRefGoogle Scholar
  11. 11.
    Ciccolo JT, Jowers EM, Bartholomew JB (2004) The benefits of exercise training for quality of life in HIV/AIDS in the post-HAART era. Sports Med 34:487–499CrossRefGoogle Scholar
  12. 12.
    Wonders KY, Whisler G, Loy H, Holt B, Bohachek K, Wise R (2013) Ten weeks of home-based exercise attenuates symptoms of chemotherapy-induced peripheral neuropathy in breast cancer patients. Health Psychol Res 1(3):e28CrossRefGoogle Scholar
  13. 13.
    Mary Collins M, Linda Abbott R, Julie Aschenbrenner R, Connie Hart B (2007) Putting evidence into practice®: evidence-based interventions for chemotherapy-induced peripheral neuropathy. Clin J Oncol Nurs 11:901CrossRefGoogle Scholar
  14. 14.
    Almeida C, DeMaman A, Kusuda R, Cadetti F, Ravanelli MI, Queiroz AL, Sousa TA, Zanon S, Silveira LR, Lucas G (2015) Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain. Pain 156:504–513. doi: 10.1097/01.j.pain.0000460339.23976.12 CrossRefPubMedGoogle Scholar
  15. 15.
    Kuphal KE, Fibuch EE, Taylor BK (2007) Extended swimming exercise reduces inflammatory and peripheral neuropathic pain in rodents. J Pain 8:989–997. doi: 10.1016/j.jpain.2007.08.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Shen J, Fox LE, Cheng J (2013) Swim therapy reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction nerve injury in rats. Pain Med 14:516–525. doi: 10.1111/pme.12057 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sluka KA, O’Donnell JM, Danielson J, Rasmussen LA (2012) Regular physical activity prevents development of chronic pain and activation of central neurons. J Appl Physiol 114:725–733. doi: 10.1152/japplphysiol.01317.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Groover AL, Ryals JM, Guilford BL, Wilson NM, Christianson JA, Wright DE (2013) Exercise-mediated improvements in painful neuropathy associated with prediabetes in mice. Pain 154:2658–2667. doi: 10.1016/j.pain.2013.07.052 CrossRefPubMedGoogle Scholar
  19. 19.
    Shankarappa SA, Piedras-Rentería ES, Stubbs EB (2011) Forced-exercise delays neuropathic pain in experimental diabetes: effects on voltage-activated calcium channels. J Neurochem 118:224–236CrossRefGoogle Scholar
  20. 20.
    Chung JM, Chung K (2002) Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Practice 2:87–97CrossRefGoogle Scholar
  21. 21.
    Baron R (2000) Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain 16:S12–S20CrossRefGoogle Scholar
  22. 22.
    Höke A (2012) Animal models of peripheral neuropathies. Neurotherapeutics 9:262–269CrossRefGoogle Scholar
  23. 23.
    Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, Jones M, Facey K, Whitacre C, McAuliffe VJ (1996) Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. N Engl J Med 334:1011–1018CrossRefGoogle Scholar
  24. 24.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63CrossRefGoogle Scholar
  25. 25.
    Parvathy SS, Masocha W (2013) Matrix metalloproteinase inhibitor COL-3 prevents the development of paclitaxel-induced hyperalgesia in mice. Med Princ Pract 22:35–41CrossRefGoogle Scholar
  26. 26.
    Geva N, Defrin R (2013) Enhanced pain modulation among triathletes: a possible explanation for their exceptional capabilities. Pain 154:2317–2323. doi: 10.1016/j.pain.2013.06.031 CrossRefPubMedGoogle Scholar
  27. 27.
    Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W (2012) Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain 153:1253–1262. doi: 10.1016/j.pain.2012.03.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Kuphal KE, Fibuch EE, Taylor BK (2007) Extended swimming exercise reduces inflammatory and peripheral neuropathic pain in rodents. J Pain 8:989–997CrossRefGoogle Scholar
  29. 29.
    Cobianchi S, Casals-Diaz L, Jaramillo J, Navarro X (2013) Differential effects of activity dependent treatments on axonal regeneration and neuropathic pain after peripheral nerve injury. Exp Neurol 240:157–167CrossRefGoogle Scholar
  30. 30.
    Cobianchi S, Marinelli S, Florenzano F, Pavone F, Luvisetto S (2010) Short- but not long-lasting treadmill running reduces allodynia and improves functional recovery after peripheral nerve injury. Neuroscience 168:273–287CrossRefGoogle Scholar
  31. 31.
    Stagg NJ, Mata HP, Ibrahim MM, Henriksen EJ, Porreca F, Vanderah TW, Philip Malan T (2011) Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model. Anesthesiology 114:940–948CrossRefGoogle Scholar
  32. 32.
    Bobinski F, Martins DF, Bratti T, Mazzardo-Martins L, Winkelmann-Duarte EC, Guglielmo LGA, Santos ARS (2011) Neuroprotective and neuroregenerative effects of low-intensity aerobic exercise on sciatic nerve crush injury in mice. Neuroscience 194:337–348. doi: 10.1016/j.neuroscience.2011.07.075 CrossRefPubMedGoogle Scholar
  33. 33.
    Detloff MR, Smith EJ, Quiros Molina D, Ganzer PD, Houlé JD (2014) Acute exercise prevents the development of neuropathic pain and the sprouting of non-peptidergic (GDNF- and artemin-responsive) c-fibers after spinal cord injury. Exp Neurol 255:38–48. doi: 10.1016/j.expneurol.2014.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Park JS, Kim S, Hoke A (2015) An exercise regimen prevents development paclitaxel induced peripheral neuropathy in a mouse model. J Peripher Nerv Syst 20:7–14CrossRefGoogle Scholar
  35. 35.
    Mkandla K, Myezwa H, Musenge E (2016) The effects of progressive-resisted exercises on muscle strength and health-related quality of life in persons with HIV-related poly-neuropathy in Zimbabwe. AIDS Care 28:639–643. doi: 10.1080/09540121.2015.1125418 CrossRefPubMedGoogle Scholar
  36. 36.
    Carmody J, Cooper K (1987) Swim stress reduces chronic pain in mice through an opioid mechanism. Neurosci Lett 74:358–363. doi: 10.1016/0304-3940(87)90324-7 CrossRefPubMedGoogle Scholar
  37. 37.
    Ke Z, Yip SP, Li L, Zheng X-X, Tong K-Y (2011) The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS One 6:e16643. doi: 10.1371/journal.pone.0016643 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Leasure JL, Jones M (2008) Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465CrossRefGoogle Scholar
  39. 39.
    Binder E, Droste SK, Ohl F, Reul JMHM (2004) Regular voluntary exercise reduces anxiety-related behaviour and impulsiveness in mice. Behav Brain Res 155:197–206. doi: 10.1016/j.bbr.2004.04.017 CrossRefPubMedGoogle Scholar
  40. 40.
    Duman CH, Schlesinger L, Russell DS, Duman RS (2008) Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 1199:148–158. doi: 10.1016/j.brainres.2007.12.047 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Salam J, Fox J, Detroy E, Guignon M, Wohl D, Falls W (2009) Voluntary exercise in C57 mice is anxiolytic across several measures of anxiety. Behav Brain Res 197:31–40. doi: 10.1016/j.bbr.2008.07.036 CrossRefPubMedGoogle Scholar
  42. 42.
    Bement MK, Sluka KA (2005) Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch Phys Med Rehabil 86:1736–1740CrossRefGoogle Scholar
  43. 43.
    Chen YW, Hsieh PL, Chen YC, Hung CH, Cheng JT (2013) Physical exercise induces excess hsp72 expression and delays the development of hyperalgesia and allodynia in painful diabetic neuropathy rats. Anesth Analg 116:482–490CrossRefGoogle Scholar
  44. 44.
    Armada-da-Silva PA, Pereira C, Amado S, Veloso AP (2013) Role of physical exercise for improving posttraumatic nerve regeneration. Int Rev Neurobiol 109:125–149. doi: 10.1016/b978-0-12-420045-6.00006-7 CrossRefPubMedGoogle Scholar
  45. 45.
    Belter JG (2004) Effects of voluntary exercise and genetic selection for high activity levels on HSP72 expression in house mice. J Appl Physiol 96:1270–1276. doi: 10.1152/japplphysiol.00838.2003 CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffmann P, Terenius L, Thorén P (1990) Cerebrospinal fluid immunoreactive β-endorphin concentration is increased by voluntary exercise in the spontaneously hypertensive rat. Regul Pept 28:233–239. doi: 10.1016/0167-0115(90)90021-n CrossRefPubMedGoogle Scholar
  47. 47.
    Tominaga M, Caterina M J, Rosen T A, Julius D (1999) The capsaicin receptor. a heat- and proton-activated lon channel. Seibutsu Butsuri 39:159–164. doi: 10.2142/biophys.39.159 CrossRefGoogle Scholar
  48. 48.
    Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol 194:261–281. doi: 10.1007/978-3-540-79090-7_8
  49. 49.
    Luo H, Cheng J, Han J-S, Wan Y (2004) Change of vanilloid receptor 1 expression in dorsal root ganglion and spinal dorsal horn during inflammatory nociception induced by complete Freund’s adjuvant in rats. Neuroreport 15:655–658. doi: 10.1097/00001756-200403220-00016 CrossRefPubMedGoogle Scholar
  50. 50.
    Luo H, Xu IS, Chen Y, Yang F, Yu L, Li GX, Liu FY, Xing GG, Shi YS, Li T, Han JS, Wan Y (2008) Behavioral and electrophysiological evidence for the differential functions of TRPV1 at early and late stages of chronic inflammatory nociception in rats. Neurochem Res 33:2151–2158. doi: 10.1007/s11064-008-9751-4 CrossRefPubMedGoogle Scholar
  51. 51.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187. doi: 10.1038/35012076 CrossRefPubMedGoogle Scholar
  52. 52.
    Gunthorpe MJ, Benham CD, Randall A, Davis JB (2002) The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmacol Sci 23:183–191. doi: 10.1016/s0165-6147(02)01999-5 CrossRefPubMedGoogle Scholar
  53. 53.
    Wood JN (2006) Molecular mechanisms of nociception and pain. Handb Clin Neurol 81:49–59CrossRefGoogle Scholar
  54. 54.
    Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210CrossRefGoogle Scholar
  55. 55.
    Cregg R, Momin A, Rugiero F, Wood JN, Zhao J (2010) Pain channelopathies. J Physiol 588:1897–1904CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Department of AnesthesiologyDaqing Oil Field General HospitalDaqingChina
  2. 2.Department of AnesthesiologyDaqing Longnan HospitalDaqingChina

Personalised recommendations