The Journal of Physiological Sciences

, Volume 68, Issue 2, pp 121–127 | Cite as

Time-course investigation of blood–brain barrier permeability and tight junction protein changes in a rat model of permanent focal ischemia

  • Peng Liu
  • Rui Zhang
  • Danyang Liu
  • Jinling Wang
  • Chunling Yuan
  • Xuemei Zhao
  • Yinjie Li
  • Xuefei Ji
  • Tianyan Chi
  • Libo ZouEmail author
Original Paper


Permanent middle cerebral artery occlusion (pMCAO) is an animal model that is widely used to simulate human ischemic stroke. However, the timing of the changes in the expression of tight junction (TJ) proteins and synaptic proteins associated with pMCAO remain incompletely understood. Therefore, to further explore the characteristics and mechanisms of blood–brain barrier (BBB) damage during cerebral ischemic stroke, we used a pMCAO rat model to define dynamic changes in BBB permeability within 120 h after ischemia in order to examine the expression levels of the TJ proteins claudin-5 and occludin and the synaptic proteins synaptophysin (SYP) and postsynaptic density protein 95 (PSD95). In our study, Evans blue content began to increase at 4 h and was highest at 8 and 120 h after ischemia. TTC staining showed that cerebral infarction was observed at 4 h and that the percentage of infarct volume increased with time after ischemia. The expression levels of claudin-5 and occludin began to decline at 1 h and were lowest at 8 and 120 h after ischemia. The expression levels of SYP and PSD95 decreased from 12 to 120 h after ischemia. GFAP, an astrocyte marker, gradually increased in the cortex penumbra over time post-ischemia. Our study helps clarify the characteristics of pMCAO models and provides evidence supporting the translational potential of animal stroke models.


Cerebral ischemia Blood–brain barrier Tight junctions pMCAO 



This work was supported by the Career Development Program for Young Teachers in Shenyang Pharmaceutical University (No. ZQN2015028), the National Natural Science Foundation of China (81503057) and the Key Laboratory for Neurodegenerative Diseases of Ministry of Education (Capital Medical University) (1300-1150170609).

Compliance with ethical standards

Ethical approval

All animal procedures performed in this study were approved by the Institute for Experimental Animals at Shenyang Pharmaceutical University (Permit Number: SYPU-IACUC-C2015-0831-203).

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Hankey GJ (2012) Anticoagulant therapy for patients with ischaemic stroke. Nat Rev Neurol 8:319–328CrossRefPubMedGoogle Scholar
  2. 2.
    Khaksari M, Mehrjerdi FZ, Rezvani ME, Safari F, Mirgalili A, Niknazar S (2017) The role of erythropoietin in remote renal preconditioning on hippocampus ischemia/reperfusion injury. J Physiol Sci 67:163–171CrossRefPubMedGoogle Scholar
  3. 3.
    Sadana P, Coughlin L, Burke J, Woods R, Mdzinarishvili A (2015) Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: possible association with AQP4 modulation. J Neurol Sci 354:37–45CrossRefPubMedGoogle Scholar
  4. 4.
    Sahota P, Savitz SI (2011) Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics 8:434–451CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thompson JW, Narayanan SV, Koronowski KB, Morris-Blanco K, Dave KR, Perez-Pinzon MA (2015) Signaling pathways leading to ischemic mitochondrial neuroprotection. J Bioenerg Biomembr 47:101–110CrossRefPubMedGoogle Scholar
  6. 6.
    Hazekawa M, Sakai Y, Yoshida M, Haraguchi T, Uchida T (2012) Single injection of ONO-1301-loaded PLGA microspheres directly after ischaemia reduces ischaemic damage in rats subjected to middle cerebral artery occlusion. J Pharm Pharmacol 64:353–359CrossRefPubMedGoogle Scholar
  7. 7.
    Aboutaleb N, Shamsaei N, Khaksari M, Erfani S, Rajabi H, Nikbakht F (2015) Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation. J Physiol Sci 65:435–443CrossRefPubMedGoogle Scholar
  8. 8.
    Liu X, Wang Z, Wang P, Yu B, Liu Y, Xue Y (2013) Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling. BMC Complement Altern Med 13:187CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44:130–139CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shin JA, Kim YA, Jeong SI, Lee KE, Kim HS, Park EM (2015) Extracellular signal-regulated kinase1/2-dependent changes in tight junctions after ischemic preconditioning contributes to tolerance induction after ischemic stroke. Brain Struct Funct 220:13–26CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Dev Ther 9:3445–3454Google Scholar
  12. 12.
    Hossmann K-A (2012) The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 32:1310–1316CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219CrossRefGoogle Scholar
  14. 14.
    Xu L, Dan M, Shao A, Cheng X, Zhang C, Yokel RA, Takemura T, Hanagata N, Niwa M, Watanabe D (2015) Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model. Int J Nanomed 10:6105–6118Google Scholar
  15. 15.
    Cen J, Liu L, Li MS, He L, Wang LJ, Liu YQ, Liu M, Ji BS (2013) Alteration in P-glycoprotein at the blood–brain barrier in the early period of MCAO in rats. J Pharm Pharmacol 65:665–672CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang L, Zhao H, Zhang X, Chen L, Zhao X, Bai X, Zhang J (2013) Nobiletin protects against cerebral ischemia via activating the p-Akt, p-CREB, BDNF and Bcl-2 pathway and ameliorating BBB permeability in rat. Brain Res Bull 96:45–53CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cui L, Zhang X, Yang R, Wang L, Liu L, Li M, Du W (2010) Neuroprotection of early and short-time applying atorvastatin in the acute phase of cerebral ischemia: down-regulated 12/15-LOX, p38MAPK and cPLA2 expression, ameliorated BBB permeability. Brain Res 1325:164–173CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Singh DP, Nimker C, Paliwal P, Bansal A (2016) Ethyl 3, 4-dihydroxybenzoate (EDHB): a prolyl hydroxylase inhibitor attenuates acute hypobaric hypoxia mediated vascular leakage in brain. J Physiol Sci 66:315–326CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Liu R, Yuan H, Yuan F, Yang SH (2012) Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res 34:331–337CrossRefPubMedGoogle Scholar
  21. 21.
    Bonova P, Danielisova V, Nemethova M, Matiasova M, Bona M, Gottlieb M (2015) Scheme of ischaemia-triggered agents during brain infarct evolution in a rat model of permanent focal ischaemia. J Mol Neurosci 57:73–82CrossRefPubMedGoogle Scholar
  22. 22.
    Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM (1999) Biphasic opening of the blood–brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 26:298–304CrossRefPubMedGoogle Scholar
  23. 23.
    Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 68:122–129CrossRefPubMedGoogle Scholar
  24. 24.
    Kim ST, Doo AR, Kim SN, Kim SY, Kim YY, Kim JH, Lee H, Yin CS, Park HJ (2012) Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus. J Physiol Sci 62:377–383CrossRefPubMedGoogle Scholar
  25. 25.
    O’Carroll SJ, Kho DT, Wiltshire R, Nelson V, Rotimi O, Johnson R, Angel CE, Graham ES (2015) Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation 12:131CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Matsumoto J, Dohgu S, Takata F, Nishioku T, Sumi N, Machida T, Takahashi H, Yamauchi A, Kataoka Y (2012) Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neurosci Lett 524:45–48CrossRefPubMedGoogle Scholar
  27. 27.
    Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood–brain barrier. J Pharm Pharmacol 58:281–293CrossRefPubMedGoogle Scholar
  28. 28.
    Chen L, Wang L, Zhang X, Cui L, Xing Y, Dong L, Liu Z, Li Y, Zhang X, Wang C, Bai X, Zhang J, Zhang L, Zhao X (2012) The protection by Octreotide against experimental ischemic stroke: up-regulated transcription factor Nrf2, HO-1 and down-regulated NF-κB expression. Brain Res 1475:80–87CrossRefPubMedGoogle Scholar
  29. 29.
    Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T (2008) Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172:521–533CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134:1031–1049CrossRefPubMedGoogle Scholar
  31. 31.
    Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL (2000) Tight junctions are membrane microdomains. J Cell Sci 113:1771–1781PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sayeed I, Wali B, Stein DG (2007) Progesterone inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Restor Neurol Neurosci 25:151–159PubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zuo L, Shi L, Yan F (2016) The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke. Neurosci Lett 627:205–210CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Noda M, Kobayashi AI (2016) Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. J Physiol Sci. doi: 10.1007/s12576-016-0460-5 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen XH, Lin ZZ, Liu AM, Ye JT, Luo Y, Luo YY, Mao XX, Liu PQ, Pi RB (2010) The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice. J Pharm Pharmacol 62:915–923CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yamaguchi M, Seki T, Imayoshi I, Tamamaki N, Hayashi Y, Tatebayashi Y, Hitoshi S (2016) Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J Physiol Sci 66:197–206CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Peng Liu
    • 1
  • Rui Zhang
    • 1
  • Danyang Liu
    • 1
  • Jinling Wang
    • 1
  • Chunling Yuan
    • 1
  • Xuemei Zhao
    • 1
  • Yinjie Li
    • 1
  • Xuefei Ji
    • 1
  • Tianyan Chi
    • 1
  • Libo Zou
    • 1
    Email author
  1. 1.Department of PharmacologyShenyang Pharmaceutical UniversityShenyang LiaoningPeople’s Republic of China

Personalised recommendations