The Journal of Physiological Sciences

, Volume 68, Issue 1, pp 33–41 | Cite as

Eicosapentaenoic acid triggers Ca2+ release and Ca2+ influx in mouse cerebral cortex endothelial bEND.3 cells

  • King-Chuen Wu
  • Kar-Lok Wong
  • Mei-Ling Wang
  • Lian-Ru Shiao
  • Iat-Lon Leong
  • Chi-Li Gong
  • Ka-Shun Cheng
  • Paul Chan
  • Yuk-Man LeungEmail author
Original Paper


Eicosapentaenoic acid (EPA), an omega-3 fatty acid abundant in fish oil, protects endothelial cells (EC) from lipotoxicity and triggers EC NO release. The latter is related to an elevation of cytosolic Ca2+. Although EPA has been shown to cause human EC cytosolic Ca2+ elevation, the mechanism is unclear. Microfluorimetric imaging was used here to measure free cytosolic Ca2+ concentration. EPA was shown to cause intracellular Ca2+ release in mouse cerebral cortex endothelial bEND.3 cells; interestingly, the EPA-sensitive intracellular Ca2+ pool(s) appeared to encompass and was larger than the Ca2+ pool mobilized by sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibition by cyclopiazonic acid. EPA also opened a Ca2+ influx pathway pharmacologically distinct from store-operated Ca2+ influx. Surprisingly, EPA-triggered Ca2+ influx was Ni2+-insensitive; and EPA did not trigger Mn2+ influx. Further, EPA-triggered Ca2+ influx did not involve Na+–Ca2+ exchangers. Thus, our results suggest EPA triggered unusual mechanisms of Ca2+ release and Ca2+ influx in EC.


Eicosapentaenoic acid Endothelial cells Ca2+ release Ca2+ influx 



Y.M.L, K.L.W and K.S.C would like to thank China Medical University, Taiwan, and the Ministry of Science and Technology of Taiwan for providing funding (103-2320-B-039-015-; 104-2320-B-039-030-; 104-2320-B-039-013-; 105-2320-B-039-028-; DMR-106-086; DMR-106-089). K.C.W would like to thank Chang Gung Memorial Hospital, Chiayi, for support (CMRPG6F0291).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.


  1. 1.
    Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49:243–251CrossRefGoogle Scholar
  2. 2.
    Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542CrossRefGoogle Scholar
  3. 3.
    Lu DY, Tsao YY, Leung YM, Su KP (2010) Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: implications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology 35:2238–2248CrossRefGoogle Scholar
  4. 4.
    Pappalardo G, Almeida A, Ravasco P (2015) Eicosapentaenoic acid in cancer improves body composition and modulates metabolism. Nutrition 31:549–555CrossRefGoogle Scholar
  5. 5.
    Kohashi K, Nakagomi A, Saiki Y, Morisawa T, Kosugi M, Kusama Y, Atarashi H, Shimizu W (2014) Effects of eicosapentaenoic acid on the levels of inflammatory markers, cardiac function and long-term prognosis in chronic heart failure patients with dyslipidemia. J Atheroscler Thromb 21:712–729CrossRefGoogle Scholar
  6. 6.
    Engler MB, Ma YH, Engler MM (1999) Calcium-mediated mechanisms of eicosapentaenoic acid-induced relaxation in hypertensive rat aorta. Am J Hypertens 12:1225–1235CrossRefGoogle Scholar
  7. 7.
    Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ (2014) Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 15:10334–10349CrossRefGoogle Scholar
  8. 8.
    Chiu SC, Chiang EP, Tsai SY, Wang FY, Pai MH, Syu JN, Cheng CC, Rodriguez RL, Tang FY (2014) Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways. J Nutr Biochem 25:934–945CrossRefGoogle Scholar
  9. 9.
    Chisaki K, Okuda Y, Suzuki S, Miyauchi T, Soma M, Ohkoshi N, Sone H, Yamada N, Nakajima T (2003) Eicosapentaenoic acid suppresses basal and insulin-stimulated endothelin-1 production in human endothelial cells. Hypertens Res 26:655–661CrossRefGoogle Scholar
  10. 10.
    WuY Zhang C, Dong Y, Wang S, Song P, Viollet B, Zou MH (2012) Activation of the AMP-activated protein kinase by eicosapentaenoic acid (EPA, 20:5 n-3) improves endothelial function in vivo. PLoS One 7:e35508CrossRefGoogle Scholar
  11. 11.
    Okuda Y, Ezure M, Tsukahara K, Sawada T, Mizutani M, Katori T, Bannai C, Yamashita K (1994) Eicosapentaenoic acid enhances intracellular free calcium in cultured human endothelial cells. Biochem Med Metab Biol 51:166–168CrossRefGoogle Scholar
  12. 12.
    Okuda Y, Kawashima K, Sawada T, Tsurumaru K, Asano M, Suzuki S, Soma M, Nakajima T, Yamashita K (1997) Eicosapentaenoic acid enhances nitric oxide production by cultured human endothelial cells. Biochem Biophys Res Commun 232:487–491CrossRefGoogle Scholar
  13. 13.
    Leung YM, Huang CF, Chao CC, Lu DY, Kuo CS, Cheng TH, Chang LY, Chou CH (2011) Voltage-gated K+ channels play a role in cAMP-stimulated neuritogenesis in mouse neuroblastoma N2A cells. J Cell Physiol 226:1090–1098CrossRefGoogle Scholar
  14. 14.
    Lee SE, Kim GD, Yang H, Son GW, Park HR, Cho JJ, Ahn HJ, Park CS, Park YS (2015) Effects of eicosapentaenoic acid on the cytoprotection through Nrf2-mediated heme oxygenase-1 in human endothelial cells. J Cardiovasc Pharmacol 66:108–117CrossRefGoogle Scholar
  15. 15.
    Lee CH, Lee SD, Ou HC, Lai SC, Cheng YJ (2014) Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci 15:10334–10349CrossRefGoogle Scholar
  16. 16.
    Singh TU, Kathirvel K, Choudhury S, Garg SK, Mishra SK (2010) Eicosapentaenoic acid-induced endothelium-dependent and -independent relaxation of sheep pulmonary artery. Eur J Pharmacol 636:108–113CrossRefGoogle Scholar
  17. 17.
    Fonteríz RI, López MG, García-Sancho J, García AG (1991) Alamethicin channel permeation by Ca2+, Mn2+ and Ni2+ in bovine chromaffin cells. FEBS Lett 283:89–92CrossRefGoogle Scholar
  18. 18.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  19. 19.
    Xiao YF, Ke Q, Chen Y, Morgan JP, Leaf A (2004) Inhibitory effect of n-3 fish oil fatty acids on cardiac Na+/Ca2+ exchange currents in HEK293t cells. Biochem Biophys Res Commun 321:116–123CrossRefGoogle Scholar
  20. 20.
    Ander BP, Hurtado C, Raposo CS, Maddaford TG, Deniset JF, Hryshko LV, Pierce GN, Lukas A (2007) Differential sensitivities of the NCX1.1 and NCX1.3 isoforms of the Na+–Ca2+ exchanger to alpha-linolenic acid. Cardiovasc Res 73:395–403CrossRefGoogle Scholar
  21. 21.
    Philbrick DJ, Mahadevappa VG, Ackman RG, Holub BJ (1987) Ingestion of fish oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) affects fatty acid compositions of individual phospholipids of rat brain, sciatic nerve and retina. J Nutr 117:1663–1670CrossRefGoogle Scholar
  22. 22.
    Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S (1999) Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304CrossRefGoogle Scholar
  23. 23.
    Moreno C, de la Cruz A, Oliveras A, Kharche SR, Guizy M, Comes N, Starý T, Ronchi C, Rocchetti M, Baró I, Loussouarn G, Zaza A, Severi S, Felipe A, Valenzuela C (2015) Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains. Cardiovasc Res 105:223–232CrossRefGoogle Scholar
  24. 24.
    Hallaq H, Smith TW, Leaf A (1992) Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. Proc Natl Acad Sci USA 89:1760–1764CrossRefGoogle Scholar
  25. 25.
    Bekpinar S, Oner P, Altug T, Eryürek F, Sürmen E, Deniz G (1989) Influence of eicosapentaenoic acid and vitamin E on brain cortex Ca2+ ATPase activity in cholesterol-fed rabbits. Int J Vitam Nutr Res 59:127–130PubMedGoogle Scholar
  26. 26.
    Kinoshita I, Itoh K, Nishida-Nakai M, Hirota H, Otsuji S, Shibata N (1994) Antiarrhythmic effects of eicosapentaenoic acid during myocardial infarction. Enhanced cardiac microsomal (Ca2+–Mg2+)–ATPase activity. Jpn Circ J 58:903–912CrossRefGoogle Scholar
  27. 27.
    Negretti N, Perez MR, Walker D, O’Neill SC (2000) Inhibition of sarcoplasmic reticulum function by polyunsaturated fatty acids in intact, isolated myocytes from rat ventricular muscle. J Physiol 523:367–375CrossRefGoogle Scholar
  28. 28.
    Georgilis K, Klempner MS (1988) In vitro effects of omega-3 fatty acids on neutrophil intracellular calcium homeostasis and receptor expression for FMLP and LTB4. Inflammation 12:475–490CrossRefGoogle Scholar
  29. 29.
    Locher R, Sachinidis A, Brunner C, Vetter W (1991) Intracellular free calcium concentration and thromboxane A2 formation of vascular smooth muscle cells are influenced by fish oil and n-3 eicosapentaenoic acid. Scand J Clin Lab Invest 51:541–547CrossRefGoogle Scholar
  30. 30.
    Asano M, Nakajima T, Iwasawa K, Asakura Y, Morita T, Nakamura F, Tomaru T, Wang Y, Goto A, Toyo-oka T, Soma M, Suzuki S, Okuda Y (1999) Eicosapentaenoic acid inhibits vasopressin-activated Ca2+ influx and cell proliferation in rat aortic smooth muscle cell lines. Eur J Pharmacol 379:199–209CrossRefGoogle Scholar
  31. 31.
    Xiao YF, Gomez AM, Morgan JP, Lederer WJ, Leaf A (1997) Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proc Natl Acad Sci USA 94:4182–4187CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • King-Chuen Wu
    • 1
    • 2
  • Kar-Lok Wong
    • 3
  • Mei-Ling Wang
    • 4
  • Lian-Ru Shiao
    • 4
  • Iat-Lon Leong
    • 5
  • Chi-Li Gong
    • 4
  • Ka-Shun Cheng
    • 3
    • 6
  • Paul Chan
    • 7
  • Yuk-Man Leung
    • 4
    Email author
  1. 1.Department of AnesthesiologyChang Gung Memorial HospitalChiayiTaiwan
  2. 2.Chang Gung University of Science and TechnologyChiayiTaiwan
  3. 3.Department of AnesthesiologyChina Medical University HospitalTaichungTaiwan
  4. 4.Department of PhysiologyChina Medical UniversityTaichungTaiwan
  5. 5.Division of Cardiology, Department of Internal MedicineKiang Wu HospitalMacauChina
  6. 6.Department of AnesthesiologyThe Qingdao University Yuhuangding HospitalYantaiChina
  7. 7.Division of Cardiology, Department of MedicineTaipei Medical University Wan Fang HospitalTaipeiTaiwan

Personalised recommendations