Role of echocardiography in assessing cardiac amyloidoses: a systematic review
- 1 Downloads
Abstract
Cardiac amyloidosis is a manifestation of one of several systemic amyloidoses, and is characterized by increased left-ventricular (LV) wall thickness and normal or decreased LV cavity size. Congestive heart failure in cardiac amyloidosis is characterized by a predominant diastolic LV dysfunction, and systolic dysfunction occurs only in late-stage disease. Echocardiography is a noninvasive, reproducible method for assessing cardiac morphology and function in cardiac amyloidosis, and some echocardiographic indices are prognostic for amyloidoses. This review describes the advances in echocardiography and its role in the diagnosis and management of cardiac amyloidoses. Our review suggests that LV longitudinal function and the cyclic variation of myocardial integrated backscatter may be the best predictors of adverse outcomes. In the future, new echocardiographic techniques, such as fully automated echocardiogram interpretation, should provide further useful information for assessing cardiac function and prognosis in cardiac amyloidosis patients.
Keywords
Cardiac amyloidosis Echocardiography Myocardial scintigraphy TransthyretinNotes
Compliance with ethical standards
Conflict of interest
Jun Koyama, Masatoshi Minamisawa, Yoshiki Sekijima, Koichiro Kuwahara, Tsutomu Katsuyama, and Kazutoshi Maruyama declare that they have no conflict of interest.
References
- 1.Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med. 1997;337:898–909.CrossRefGoogle Scholar
- 2.Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349:583–96.CrossRefGoogle Scholar
- 3.Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126:1286–300.CrossRefGoogle Scholar
- 4.Koike H, Misu K, Ikeda S, et al. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan. Early- vs late-onset form. Arch Neurol. 2002;59:1771–6.CrossRefGoogle Scholar
- 5.Koike H, Sobue G. Late-onset familial amyloid polyneuropathy in Japan. Amyloid. 2012;19:55–7.CrossRefGoogle Scholar
- 6.Chew C, Ziady GM, Raphael MJ, et al. The functional defect in amyloid heart disease. The “stiff heart” syndrome. Am J Cardiol. 1975;36:438–44.CrossRefGoogle Scholar
- 7.Borer JS, Henry WL, Epstein SE. Echocardiographic observations in patients with systemic infiltrative disease involving the heart. Am J Cardiol. 1977;39:184–8.CrossRefGoogle Scholar
- 8.Child JS, Krivokapich J, Abbasi AS. Increased right ventricular thickness on echocardiography in amyloid infiltrative cardiomyopathy. Am J Cardiol. 1979;44:1391–5.CrossRefGoogle Scholar
- 9.Child JS, Krivokapich J, Perloff JK. Effect of left ventricular size on mitral E point to ventricular septal separation in assessment of cardiac performance. Am Heart J. 1981;101:797–805.CrossRefGoogle Scholar
- 10.St John Sutton MG, Reichek N, Kastor JA, et al. Computerized M-mode echocardiographic analysis of left ventricular dysfunction in cardiac amyloid. Circulation. 1982;66:790–9.CrossRefGoogle Scholar
- 11.Siqueira-Filho AG, Cunha CL, Tajik AJ, et al. M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation. 1981;63:188–96.CrossRefGoogle Scholar
- 12.Mohty D, Pradel S, Magne J, et al. Prevalence and prognostic impact of left-sided valve thickening in systemic light-chain amyloidosis. Clin Res Cardiol. 2017;106:331–40.CrossRefGoogle Scholar
- 13.Carroll JD, Gaasch WH, McAdam KP. Amyloid cardiomyopathy: characterization by distinctive voltage/mass relation. Am J Cardiol. 1982;49:9–13.CrossRefGoogle Scholar
- 14.Simons M, Isner JM. Assessment of relative sensitivities of noninvasive tests for cardiac amyloidosis in documented cardiac amyloidosis. Am J Cardiol. 1992;69:425–7.CrossRefGoogle Scholar
- 15.Hamer JP, Janssen S, van Rijswijk MH, et al. Amyloid cardiomyopathy in systemic non-hereditary amyloidosis. Clinical, echocardiographic and electrocardiographic findings in 30 patients with AA and 24 patients with AL amyloidosis. Eur Heart J. 1992;13:623–7.CrossRefGoogle Scholar
- 16.Rahman JE, Helou EF, Gelzer-Bell R, et al. Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol. 2004;43:410–5.CrossRefGoogle Scholar
- 17.Bhandari AK, Nanda NC. Myocardial texture characterization by two-dimensional echocardiography. Am J Cardiol. 1983;51:817–25.CrossRefGoogle Scholar
- 18.Nicolosi GL, Pavan D, Lestuzzi C, et al. Prospective identification of patients with amyloid heart disease by two-dimensional echocardiography. Circulation. 1984;70:432–7.CrossRefGoogle Scholar
- 19.Falk RH, Plehn JF, Deering T, et al. Sensitivity and specificity of the echocardiographic features of cardiac amyloidosis. Am J Cardiol. 1987;59:418–22.CrossRefGoogle Scholar
- 20.Falk RH, Rubinow A, Cohen AS. Cardiac arrhythmias in systemic amyloidosis: correlation with echocardiographic abnormalities. J Am Coll Cardiol. 1984;1:107–13.CrossRefGoogle Scholar
- 21.Cueto-Garcia L, Reeder GS, Kyle RA, et al. Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol. 1985;6:737–43.CrossRefGoogle Scholar
- 22.Kristen AV, Perz JB, Schonland SO, et al. Non-invasive predictors of survival in cardiac amyloidosis. Eur J Heart Fail. 2007;9:617–24.CrossRefGoogle Scholar
- 23.Dubrey SW, Bilazarian S, LaValley M, et al. Signal-averaged electrocardiography in patients with AL (primary) amyloidosis. Am Heart J. 1997;134:994–1001.CrossRefGoogle Scholar
- 24.Eriksson P, Backman C, Bjerle P, et al. Non-invasive assessment of the presence and severity of cardiac amyloidosis A study in familial amyloidosis with polyneuropathy by cross sectional echocardiography and technetium-99 m pyrophosphate scintigraphy. Br Heart J. 1984;52:321–6.CrossRefGoogle Scholar
- 25.Fournier C, Grimon G, Rinaldi JP, et al. Usefulness of technetium-99 m pyrophosphate myocardial scintigraphy in amyloid polyneuropathy and correlation with echocardiography. Am J Cardiol. 1993;72:854–7.CrossRefGoogle Scholar
- 26.Sperry BW, Vranian MN, Tower-Rader A, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. JACC Cardiovasc Imaging. 2018;11:234–42.CrossRefGoogle Scholar
- 27.Dubrey S, Pollak A, Skinner M, et al. Atrial thrombi occurring during sinus rhythm in cardiac amyloidosis: evidence for atrial electromechanical dissociation. Br Heart J. 1995;74:541–4.CrossRefGoogle Scholar
- 28.Feng D, Edwards WD, Oh JK, et al. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation. 2007;116:2420–6.CrossRefGoogle Scholar
- 29.Feng D, Syed IS, Martinez M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119:2490–7.CrossRefGoogle Scholar
- 30.Klein AL, Hatle LK, Burstow DJ, et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1989;13:1017–26.CrossRefGoogle Scholar
- 31.Klein AL, Hatle LK, Burstow DJ, et al. Comprehensive Doppler assessment of right ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1990;15:99–108.CrossRefGoogle Scholar
- 32.Klein AL, Hatle LK, Taliercio CL, et al. Serial Doppler echocardiographic follow-up of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1990;16:1135–41.CrossRefGoogle Scholar
- 33.Dubrey SW, Cha K, Skinner M, et al. Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart. 1997;78:74–82.CrossRefGoogle Scholar
- 34.Murphy L, Falk RH. Left atrial kinetic energy in AL amyloidosis: can it detect early dysfunction? Am J Cardiol. 2000;86:244–6.CrossRefGoogle Scholar
- 35.Patel AR, Dubrey SW, Mendes LA, et al. Right ventricular dilation in primary amyloidosis: an independent predictor of survival. Am J Cardiol. 1997;80:486–92.CrossRefGoogle Scholar
- 36.Klein AL, Hatle LK, Taliercio CP, et al. Prognostic significance of Doppler measures of diastolic function in cardiac amyloidosis. A Doppler echocardiography study. Circulation. 1991;83:808–16.CrossRefGoogle Scholar
- 37.Ng B, Connors LH, Davidoff R, et al. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med. 2005;165:1425–9.CrossRefGoogle Scholar
- 38.Migrino RQ, Mareedu RK, Eastwood D, et al. Left ventricular ejection time on echocardiography predicts long-term mortality in light chain amyloidosis. J Am Soc Echocardiogr. 2009;22:1396–402.CrossRefGoogle Scholar
- 39.Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203–12.CrossRefGoogle Scholar
- 40.Pinney JH, Whelan CJ, Petrie A, et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc. 2013;2:e000098. https://doi.org/10.1161/JAHA.113.000098 (accessed 20 Dec 2014).CrossRefGoogle Scholar
- 41.Koyama J, Ray-Sequin PA, Davidoff R, et al. Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am J Cardiol. 2002;89:1067–71.CrossRefGoogle Scholar
- 42.Palka P, Lange A, Donnelly JE, et al. Doppler tissue echocardiographic features of cardiac amyloidosis. J Am Soc Echocardiogr. 2002;15:1353–60.CrossRefGoogle Scholar
- 43.Koyama J, Davidoff R, Falk RH. Longitudinal myocardial velocity gradient derived from pulsed Doppler tissue imaging in AL amyloidosis: a sensitive indicator of systolic and diastolic dysfunction. J Am Soc Echocardiogr. 2004;17:36–44.CrossRefGoogle Scholar
- 44.Perugini E, Rappezi C, Reggiani LB, et al. Comparison of ventricular long-axis function in patients with cardiac amyloidosis versus idiopathic restrictive cardiomyopathy. Am J Cardiol. 2005;95:146–9.CrossRefGoogle Scholar
- 45.Al-Zahrani GB, Bellavia D, Pellikka PA, et al. Doppler myocardial imaging compared to standard two-dimensional and Doppler echocardiography for assessment of diastolic function in patients with systemic amyloidosis. J Am Soc Echocardiogr. 2009;22:290–8.CrossRefGoogle Scholar
- 46.Koyama J, Ray-Sequin PA, Falk RH. Prognostic significance of ultrasound myocardial tissue characterization in patients with cardiac amyloidosis. Circulation. 2002;106:556–61.CrossRefGoogle Scholar
- 47.Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol. 1995;26:135–6.Google Scholar
- 48.Tei C, Dujardin KS, Hodge DO, et al. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J Am Coll Cardiol. 1996;28:658–64.CrossRefGoogle Scholar
- 49.Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107:2446–52.CrossRefGoogle Scholar
- 50.Bellavia D, Abraham TP, Pellikka PA, et al. Detection of left ventricular systolic dysfunction in cardiac amyloidosis with strain rate echocardiography. J Am Soc Echocardiogr. 2007;20:1194–202.CrossRefGoogle Scholar
- 51.Ogiwara F, Koyama J, Ikeda S, et al. Comparison of the strain Doppler echocardiographic features of familial amyloid polyneuropathy (FAP) and light-chain amyloidosis. Am J Cardiol. 2005;95:538–40.CrossRefGoogle Scholar
- 52.Bellavia D, Pellikka PA, Abraham TP, et al. Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. Am J Cardiol. 2008;101:1039–45.CrossRefGoogle Scholar
- 53.Bellavia D, Pellikka PA, Al-Zahrani GB, et al. Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr. 2010;23:643–52.CrossRefGoogle Scholar
- 54.Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging. 2010;3:333–42.CrossRefGoogle Scholar
- 55.Bellavia D, Pellikka PA, Dispenzieri A, et al. Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study. Eur Heart J Cardiovasc Imaging. 2012;8:680–9.CrossRefGoogle Scholar
- 56.Modesto KM, Cauduro S, Dispenzieri A, et al. Two-dimensional acoustic pattern derived strain parameters closely correlate with one-dimensional tissue Doppler derived strain measurements. Eur J Echocardiogr. 2006;7:315–21.CrossRefGoogle Scholar
- 57.Sun JP, Stewart WJ, Yang XS, et al. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol. 2009;103:411–5.CrossRefGoogle Scholar
- 58.Di Bella G, Minutoli F, Pingitore A, et al. Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy. Circ J. 2011;75:1200–8.CrossRefGoogle Scholar
- 59.Kusunose K, Yamada H, Iwase T, et al. Images in cardiovascular medicine. Cardiac magnetic resonance imaging and 2-dimensional speckle tracking echocardiography in secondary cardiac amyloidosis. Circ J. 2010;74:1494–6.CrossRefGoogle Scholar
- 60.Liu D, Hu K, Niemann M, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:1066–72.CrossRefGoogle Scholar
- 61.Phelan D, Thavendieanathan P, Popovic Z, et al. Application of parametric display of two-dimensional speckle-tracking longitudinal strain to improve the etiologic diagnosis of mild to moderate left ventricular hypertrophy. J Am Soc Echocardiogr. 2014;27:888–95.CrossRefGoogle Scholar
- 62.Bravo PE, Fujikura K, Kijewski MF, et al. Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits. JACC Cardiovasc Imaging. 2018. https://doi.org/10.1016/j.jcmg.2018.06.016.Google Scholar
- 63.Buss SJ, Emami M, Mereles D, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical biochemical markers. J Am Coll Cardiol. 2012;60:1067–76.CrossRefGoogle Scholar
- 64.Barros-Gomes S, Williams B, Nhola LF, et al. Prognosis of light chain amyloidosis with preserved LVEF: added value of 2D speckle-tracking echocardiography to the current prognostic staging system. JACC Cardiovasc Imaging. 2017;10:398–407.CrossRefGoogle Scholar
- 65.Liu D, Hu K, Niemann M, et al. Impact of regional left ventricular function on outcome for patients with AL amyloidosis. PLoS One. 2013;8:e56923.CrossRefGoogle Scholar
- 66.Quarta CC, Solomon SD, Uraizee I, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation. 2014;129:1840–9.CrossRefGoogle Scholar
- 67.Minamisawa M, Koyama J, Sekijima Y, et al. Comparison of the standard and speckle tracking echocardiographic features of wild-type and mutated transthyretin cardiac amyloidoses. Eur Heart J Cardiovasc Imaging. 2016;17:402–10.CrossRefGoogle Scholar
- 68.Siepen FAD, Bauer R, Voss A, et al. Predictors of survival stratification in patients with wild-type cardiac amyloidosis. Clin Res Cardiol. 2018;107:158–69.CrossRefGoogle Scholar
- 69.Bodez D, Ternacle J, Guellich A, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis. Amyloid. 2016;23:158–67.CrossRefGoogle Scholar
- 70.Uzan C, Lairez O, Raud-Raynier P, et al. Right ventricular longitudinal strain: a tool for diagnosis and prognosis in light-chain amyloidosis. Amyloid. 2018;25:18–25.CrossRefGoogle Scholar
- 71.Henein MY, Suhr OB, Arvidsson S, et al. Reduced left atrial myocardial deformation irrespective of cavity size: a potential cause for atrial arrhythmia in hereditary transthyretin amyloidosis. Amyloid. 2018;25:46–53.CrossRefGoogle Scholar
- 72.Kobayashi Y, Moneghetti KJ, Boralkar K, et al. Challenging the complementarity of different metrics of left atrial function: insight from a cardiomyopathy-based study. Eur Heart J Cardiovasc Imaging. 2017;18:1153–62.CrossRefGoogle Scholar
- 73.Nochioka K, Quarta CC, Claggett B, et al. Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging. 2017;18:1128–37.Google Scholar
- 74.Vitarelli A, Lai S, Petrucci MT, et al. Biventricular assessment of light-chain amyloidosis using 3D speckle tracking echocardiography: differentiation from other forms of myocardial hypertrophy. Int J Cardiol. 2018;271:371–7.CrossRefGoogle Scholar
- 75.Mohty D, Petitalot V, Magne J, et al. Left atrial function in patients with light chain amyloidosis: a transthoracic 3D speckle tracking imaging study. J Cardiol. 2018;71:419–27.CrossRefGoogle Scholar
- 76.Castano A, Narotsky DL, Hamid N, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J. 2017;38:2879–87.CrossRefGoogle Scholar
- 77.Treibel TA, Fontana M, Gilbertson JA, et al. Occult transthyretin cardiac amyloid in severe calcific aortic stenosis: Prevalence and prognosis in patients undergoing surgical aortic valve replacement. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/circimaging.116.005066.Google Scholar
- 78.Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138:1623–35.CrossRefGoogle Scholar