Advertisement

The role of integral membrane proteins in computational complexity theory

  • David Orellana-Martín
  • Miguel Á. Martínez-del-Amor
  • Luis Valencia-Cabrera
  • Agustín Riscos-Núñez
  • Mario J. Pérez-Jiménez
Article

Abstract

In the framework of Membrane Computing, several tools to tackle the P versus NP problems by means of frontiers of the efficiency expressed in terms of syntactic or semantic ingredients, have been developed. In this paper, an overview of the results in computational complexity theory concerning to membrane systems (tissue-like and cell-like approach) with symport/antiport rules (where objects are transported without evolving), is given. The frontiers are formulated regarding the length of communication rules, the kind of rules implementing the production of an exponential number of cells/membranes in polynomial time, and the role of the environment. An interesting remark of the obtained results refers that the underlying structure to membrane systems (directed graph versus rooted tree) does not matter in this context.

Keywords

P systems Computational complexity theory Structure Cell division Membrane fission 

Notes

Acknowledgements

This work was partially supported by Project TIN2017-89842-P, cofinanced by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo Regional (FEDER) of the European Union and by Grant number 61320106005 of the National Natural Science Foundation of China.

References

  1. 1.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Inf. 71(2–3), 279–308 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Păun, G.: Membrane Computing: An Introduction. Springer Natural Computing Series (2002)Google Scholar
  5. 5.
    Paun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford, UK (2009)Google Scholar
  6. 6.
    Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems and Synthetic Biology. Springer, Cham, Switzerland (2014)Google Scholar
  7. 7.
    Pan, L., Paun, Gh., Pérez-Jiménez, M.J., Song, T.: Bio-inspired Computing: Theories and Applications. Communications in Computer and Information Science Series (2014)Google Scholar
  8. 8.
    Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life applications with Membrane Computing. Emergence, Complexity and Computation Series (2017)CrossRefGoogle Scholar
  9. 9.
    Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Biomembranes: Structural Organization and Basic Functions. Molecular Cell Biology, 4th edn. W. H Freeman, New York (2000)Google Scholar
  10. 10.
    Padan, E., Landau, M.: Sodium–Proton (Na+/H+) Antiporters: properties and roles in health and disease. In: Sigel, A., Sigel, H., Sigel, R.K.O. (eds.) The Alkali Metal Ions: Their Role in Life. Metal Ions in Life Sciences, vol. 16, pp. 391–458. Springer, Berlin (2016)CrossRefGoogle Scholar
  11. 11.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Gener. Comput. 20, 295–305 (2002)CrossRefGoogle Scholar
  12. 12.
    Macías-Ramos, L.F., Song, B., Song, T., Pan, L., Pérez-Jiménez, M.J.: On efficiency of P systems with symport/antiport and membrane division. In: Proceedings of the Fifteenth Brainstorming Week on Membrane Computing, Fénix Editora, pp. 147–160. Sevilla, Spain, 31 January–3 February 2017Google Scholar
  13. 13.
    Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. 3, 295–303 (2008)CrossRefGoogle Scholar
  14. 14.
    Macías-Ramos, L.F., Song, B., Valencia-Cabrera, L., Pan, L., Pérez-Jiménez, M.J.: Membrane fission: a computational complexity perspective. Complexity 21(6), 321–334 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pérez-Jiménez, M.J., Sosík, P.: An optimal frontier of the efficiency of tissue P systems with cell separation. Fundam. Inf. 138(1–2), 45–60 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–285 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gutiérrez-Escudero, R., Pérez-Jiménez, M.J., Rius-Font, M.: Characterizing tractability by tissue-like P systems. In: Lecture Notes in Computer Science, vol. 5957, pp. 289–300 (2010)CrossRefGoogle Scholar
  18. 18.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Lecture Notes in Computer Science, vol. 3850, pp. 224–240 (2006)Google Scholar
  19. 19.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Jiménez, A.: Efficient simulation of tissue-like P systems by transition cell-like P systems. Nat. Comput. 8(4), 797–806 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J., Romero-Jiménez, A.: Characterizing tractability by cell-like membrane systems. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications, pp. 137–154. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  21. 21.
    Macías-Ramos, L.F., Song, B., Song, T., Pan, L., Pérez-Jiménez, M.J.: Limits on efficient computation in P systems with symport/antiport. In: Graciani, C., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the Fifteenth Brainstorming Week on Membrane Computing, pp. 147–160. Sevilla, Spain, 31 January–3 February 2017Google Scholar
  22. 22.
    Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J.: An optimal frontier of the efficiency of tissue P systems with cell division. In: Garcí-Quismondo, M., Macías-Ramos, L.F., Păun, G., Pérez Hurtado, I., Valencia-Cabrera, L. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, Report RGNC 01/2012, Fénix Editora, pp. 141–166. Seville, Spain, 30 January–3 February, 2012Google Scholar
  23. 23.
    Valencia-Cabrera, L., Song, B., Macías-Ramos, L.F. , Pan, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Minimal cooperation in P systems with symport/antiport: A complexity approach. In: Macías, L.F., Păun, G., Riscos, A., Valencia, L. (eds) Proceedings of the Thirteenth Brainstorming Week on Membrane Computing, pp. 301–323. Sevilla, Spain, 2–6 February 2015Google Scholar
  24. 24.
    Pan, L., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius, M.: New frontiers of the efficiency in tissue P systems. In: Pan, L., Păun, G., Song, T. (eds.) Pre-proceedings of Asian Conference on Membrane Computing (ACMC 2012), Huazhong University of Science and Technology, pp. 61–73. Wuhan, China, 15–18 October 2012Google Scholar
  25. 25.
    Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius, M., Valencia-Cabrera, L.: The efficiency of tissue P systems with cell separation relies on the environment. In: Lecture Notes in Computer Science, vol. 7762, pp. 243–256 (2013)Google Scholar
  26. 26.
    Macías-Ramos, L.F., Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-Cabrera, L.: Membrane fission versus cell division: when membrane proliferation is not enough. Theor. Compu. Sci. 608, 57–65 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius, M., Romero, F.J. : The role of the environment in tissue like P systems with cell division. In: García-Quismondo, M., Macías-Ramos, L.F., Păun, G., Pérez-Hurtado, I., Valencia-Cabrera, L. (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, Report RGNC 01/2012, Fénix Editora, pp. 89–104. Seville, Spain, 30 January–3 February 2012Google Scholar
  28. 28.
    Macías-Ramos, L.F., Song, B., Song, T., Pan, L., Pérez-Jiménez, M.J.: On efficiency of P systems with symport/antiport and membrane division. Int. J. Inf. Theor. Appl. 24(3), 229–245 (2017)Google Scholar
  29. 29.
    Song, B., Pérez-Jiménez, M.J., Pan, L.: Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division. Biosystems 130, 51–58 (2015)CrossRefGoogle Scholar
  30. 30.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Characterising the complexity of tissue P systems with fission rules. J. Comput. Syst. Sci. 90, 115–128 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2018

Authors and Affiliations

  • David Orellana-Martín
    • 1
  • Miguel Á. Martínez-del-Amor
    • 1
  • Luis Valencia-Cabrera
    • 1
  • Agustín Riscos-Núñez
    • 1
  • Mario J. Pérez-Jiménez
    • 1
  1. 1.Research Group on Natural Computing, Department of Computer Science and Artificial IntelligenceUniversidad de SevillaSevillaSpain

Personalised recommendations