Advertisement

Food Security

, Volume 11, Issue 5, pp 989–1008 | Cite as

Impact of food consumption on water footprint and food security in Tunisia

  • Asma SouissiEmail author
  • Nadhem Mtimet
  • Chokri Thabet
  • Talel Stambouli
  • Ali Chebil
Original Paper
  • 67 Downloads

Abstract

Over the next few years, Tunisia will face a growing scarcity of water. The concept of a food consumption water footprint has been recently applied to expand knowledge about water management and to respond to problems of food insecurity. In this study, following the Water Footprint Network (WFN) method, we assessed and analysed the food consumption water footprint of Tunisian households by geographical location and by group of food products. We used results from national food surveys to collect the quantities of food consumed and the WFN database containing water footprints of food products specific to Tunisia. We found that the average water footprint for the main consumed food groups has increased by 31% during recent decades, from 1208 m3/capita/year in 1985 to 1586 m3/capita/year in 2010. Despite the decline in cereal consumption in Tunisia, the food water footprint has continued to rise as a result of increased consumption of animal source products. This increase is associated with regional variations in food choices that imply large differences in water footprints. Urban diets present higher water footprints than rural diets proportionally to higher standards of living. This study provides a new perspective on the water footprint of food consumption in Tunisia by using dietary data at the household level and demonstrated significant variability in water footprints due to different food consumption modes, and socio-economic and geographic characteristics. Future food consumption trends will likely create more pressure on water resources, especially in Tunis city and coastal areas of Tunisia. Special measures related to price policies, sensitization of consumers, and changes in production systems may have to be taken by policy makers to reduce the water footprint in order to improve food security strategies and water management in Tunisia.

Keywords

Water footprint Virtual water Food security Tunisian diet Water scarcity Consumer behaviour 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their very useful comments and suggestions which have improved the quality of the manuscript. This research was funded by the research project n° 106545 “Eau virtuelle et sécurité alimentaire en Tunisie” financed by The International Development Research Centre (IDRC). Additional support for one of the coauthors was provided by the Livestock Agri-Food Systems (LAFS) CGIAR Program led by ILRI.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Allan, J. A. (1993). Fortunately, there are substitutes for water otherwise our hydro-political futures would be impossible (pp. 13–26). Proceedings of Priorities for water resources allocation and management, ODA, London.Google Scholar
  2. Alouane, L., Bahri, I., Ben Abdallah, S., Maatoug, A., Sellami, A., & Zarrouk, W. (2013). Les changements des modes de consommation en Tunisie. Institut National de la consommation, 162. Google Scholar
  3. Antar, D. (2010). L’alimentation méditerranéenne et le régime alimentaire actuel Tunisien. Etude bibliographique. Institut National de la consommation, 21.Google Scholar
  4. Belhedi, A. (2007). Le rayonnement spatial des villes tunisiennes à travers la diffusion des entreprises multi-établissements pour l’innovation. European Journal of Geography. Space, Society, Territory document 372.Google Scholar
  5. Ben Abdallah, S., Elfkih, S., Ghzel, L., Souissi, A., Chebil, A., Frija, A., Stambouli, T., Mtimet, N., Abdelkefi, B., & Benalaya, A. (2014). Evaluation de l’Eau Virtuelle en Aridoculture : Perspectives pour un Développement durable dans les régions de Sfax, Mahdia et Médenine. Revue des Régions Arides - Numero Special - n° 35, 2011-2015.Google Scholar
  6. Ben Romdhane, H., Khaldi, R., Oueslati, A., & Skhiri, H. (2002). Transition épidémiologique et transition alimentaire et nutritionnelle en Tunisie. Options Méditerranéennes, Série B, n°41, 7–27.Google Scholar
  7. Ben Salem, M., & Khemiri, H. (2008). The impact of agricultural projects on cows’ productivity, farmers’ revenue and rural development in Tunisia. Livestock Research for Rural Development, 20, 70.Google Scholar
  8. Bourziza, R., Hammani, A., Kuper, M., & Bouaziz, A. (2017). Performances du goutte-à-goutte enterré pour l’irrigation de jeunes palmiers dattiers. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 5(1), 5–125.Google Scholar
  9. Chahed, J., Besbes, M., & Hamdane, A. (2015). Virtual-water content of agricultural production and food trade balance of Tunisia. International Journal of Water Resources Development, 31(3), 407–421.CrossRefGoogle Scholar
  10. Chapagain, A. K., & Hoekstra, A. Y. (2004). Water footprints of nations. Value of Water Research Report Series, 16 (1), UNESCO-IHE, Delft, the Netherlands.Google Scholar
  11. Chebil, A., Bahri, W., & Frija, A. (2013). Mesure et déterminants de l’efficacité d’usage de l’eau d’irrigation dans la production du blé dur : cas de Chabika (Tunisie). New Medit: Mediterranean Journal of Economics, Agriculture and Environment, 1/2013, 49–55.Google Scholar
  12. Chenoweth, J., Hadjikakou, M., & Zoumides, C. (2014). Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrology and Earth System Sciences, 18(6), 2325–2342.CrossRefGoogle Scholar
  13. Chouchane, H., Hoekstra, A. Y., Krol, M. S., & Mekonnen, M. M. (2015). Water footprint of Tunisia from an economic perspective. Ecological Indicators, 52, 311–319.CrossRefGoogle Scholar
  14. Chouchane, H., Krol, M. S., & Hoekstra, A. Y. (2017). Expected increase in staple crop imports in water-scarce countries in 2050. In EGU General Assembly Conference Abstracts, 19, 2828.Google Scholar
  15. Direction générale des ressources en eau (DGRE). (2010). Base de données pluviométriques et hydrologiques. Ministère de l’agriculture et des ressources hydriques et de la pêche, 14.Google Scholar
  16. Elloumi, M. (2016). La gouvernance des eaux souterraines en Tunisie. International Water Management Institute Project Report n°7. Groundwater governance in the Arab World, 120.Google Scholar
  17. Ercin, A. E., & Hoekstra, A. Y. (2014). Water footprint scenarios for 2050: a global analysis. Environment International, 64, 71–82.CrossRefGoogle Scholar
  18. FAO. (1996). Declaration on world food security. World Food Summit, FAO, Rome.Google Scholar
  19. FAO. (2005). Profil Nutritionnel de la Tunisie - Division de l’Alimentation et de la Nutrition, 51.Google Scholar
  20. FAO. (2010). ‘CROPWAT 8.0 model’, FAO, Rome. http://www.fao.org/nr/water/infores_databases_cropwat.html. Accessed 22 September 2014.
  21. FAO. (2015). Egypt, Jordan, Morocco and Tunisia Key Trends In The Agrifood Sector, Country Highlights Report. Food and Agriculture Organization of the United Nations, Rome, 84.Google Scholar
  22. Feng, K., Hubacek, K., Minx, J., Ling Siu, Y., Chapagain, A., Yu, Y., Guan, D., & Barrett, J. (2010). Spatially explicit analysis of water footprints in the UK. Water, 3(1), 47–63.CrossRefGoogle Scholar
  23. Feng, K., Chapagain, A., Suh, S., Pfister, S., & Hubacek, K. (2011a). Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Economic Systems Research, 23(4), 371–385.CrossRefGoogle Scholar
  24. Feng, K., Siu, Y. L., Guan, D., & Hubacek, K. (2011b). Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption-based approach. Applied Geography, 32, 691–701.CrossRefGoogle Scholar
  25. Frija, A., Chebil, A., Speelman, S., Buysse, J., & Van Huylenbroeck, G. (2009). Water use and technical efficiencies in horticultural greenhouses in Tunisia. Agricultural Water Management, 96(11), 1509–1516.CrossRefGoogle Scholar
  26. Gassert, F., Reig, P., Luo, T., & Maddocks, A. (2013). Aqueduct country and River Basin rankings. A weighted aggregation of spatially distinct hydrological indicators. World Resources Institute. Washington, DC, 28.Google Scholar
  27. Gilmont, M. (2015). Water resource decoupling in the MENA through food trade as a mechanism for circumventing national water scarcity. Food Security, 7(6), 1113–1131.CrossRefGoogle Scholar
  28. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.CrossRefGoogle Scholar
  29. Grafton, R. Q., Williams, J., & Jiang, Q. (2015). Food and water gaps to 2050: preliminary results from the global food and water system (GFWS) platform. Food Security, 7(2), 209–220.CrossRefGoogle Scholar
  30. Hamdane, A. (2007). La gestion de la demande en eau d’irrigation. Vision intégrale de l’eau agricole et futurs possibles: cas de la Tunisie. Paper presented at the conference Water demand management in the Mediterranean: progress and policies, Zaragoza, 19–21 March 2007.Google Scholar
  31. Haut-commissariat au Plan (HCP). (2016). Présentation des résultats de l’enquête nationale sur la consommation et les dépenses des ménages 2013–2014.Google Scholar
  32. Hmila, N. (2012). Empreinte eau de la Tunisie : Analyses pour des orientations stratégiques de la gestion des ressources en eau. Mémoire de Mastère en génie de l’environnement. Institut Supérieur des sciences Biologiques Appliquées de Tunis, Université El Manar, Novembre 2012, 101.Google Scholar
  33. Hoekstra, A. Y. (2003). Virtual water. An introduction. Proceedings of The International Expert Meeting on Virtual Water Trade. Values of Water Research Report Series, vol. 12. IHE, Delft, Holland.Google Scholar
  34. Hoekstra, A. Y., & Chapagain, A. (2007). Water footprints of nations: water use by people as a function of their consumption pattern. Water Resources Management, 21, 35–48.CrossRefGoogle Scholar
  35. Hoekstra, A. Y., & Mekonnen, M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109, 3232–3237.CrossRefGoogle Scholar
  36. Hoekstra, A.Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. (2009). Water footprint manual: state of the art 2009. Water Footprint Network, Enschede, the Netherlands.Google Scholar
  37. Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. (2011). The water footprint assessment manual: Setting the global standard. Earthscan, London, UK, 203.Google Scholar
  38. Hoff, H., Döll, P., Fader, M., Gerten, D., Hauser, S., & Siebert, S. (2014). Water footprints of cities - indicators for sustainable consumption and production. Hydrology and Earth System Sciences, 18(1), 213–226.CrossRefGoogle Scholar
  39. Huang, F., Liu, Z., Ridoutt, B. G., Huang, J., & Li, B. (2015). China’s water for food under growing water scarcity. Food Security, 7(5), 933–949.CrossRefGoogle Scholar
  40. Hubacek, K., Guan, D., Barrett, J., & Wiedmann, T. (2009). Environmental implications of urbanization and lifestyle change in China: ecological and water foot- prints. Journal for Cleaner Production, 17, 1241–1248.CrossRefGoogle Scholar
  41. Ibidhi, R., & Ben Salem, H. (2018). Water footprint assessment of sheep farming systems based on farm survey data. Animal, 13(2), 1–10.Google Scholar
  42. INM. (2019). Institut National Météorologique de la Tunisie. http://www.meteo.tn/htmlfr/agriculture/produits.html . Accessed 5 March 2019.
  43. INS. (1980). Institut National de la Statistique. Enquête Population-Emploi 1980.Google Scholar
  44. INS. (1985). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 1985.Google Scholar
  45. INS. (1990). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 1990.Google Scholar
  46. INS. (1995). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 1995.Google Scholar
  47. INS. (2000). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 2000.Google Scholar
  48. INS. (2005). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 2005.Google Scholar
  49. INS. (2009). Institut National de la Statistique. Série méthodes statistiques n°6,157.Google Scholar
  50. INS. (2010). Institut National de la Statistique. Enquêtes sur la consommation des ménages tunisiens. Partie B, résultats de l’enquête alimentaire et nutritionnelle 2010.Google Scholar
  51. INS. (2014). Statistical yearbook - Tunisia 2010-2014, 367.Google Scholar
  52. Institut Tunisien des Etudes Stratégiques (ITES). (2014). Étude stratégique : Système hydraulique de la Tunisie à l’horizon 2030. Tunis, 220.Google Scholar
  53. Institut Tunisien des Etudes Stratégiques (ITES). (2017). Revue Stratégique sur la sécurité alimentaire et nutritionnelle en Tunisie. Tunis, 245.Google Scholar
  54. Jaouadi, T. (2000). Evolution du comportement alimentaire tunisien. In M. Padilla & B. Oberti, (Eds). Alimentation et nourritures autour de la Méditerranée, pp. 225-250. Paris Karthala – Ciheam. 264.Google Scholar
  55. Kalus, H., Guan, D., Barrett, D., & Wiedmann, T. (2009). Environmental implications of urbanization and lifestyle change in China: ecological and water footprints. Journal of Cleaner Production, 17(14), 1241–1248.CrossRefGoogle Scholar
  56. Kelly, A., Becker, W., & Helsing, E. (1991). Food balance sheets. Food and health data: their use in nutrition policy-making. Copenhagen: WHO Regional Office for Europe, 39–47.Google Scholar
  57. Kerkhof, A. C., Nonhebel, S., & Moll, H. C. (2009). Relating the environmental impact of consumption to household expenditures: an input-output analysis. Ecological Economics, 68(4), 1160–1170.CrossRefGoogle Scholar
  58. Lachaal, L., Chahtour, N., & Thabet, B. (2002). Technical efficiency of dairy production in Tunisia: a data envelopment analysis. New Medit: Mediterranean Journal of Economics, Agriculture and Environment, 3, 22–26.Google Scholar
  59. Lacirignola, C., Dernini, S., Capone, R., Meybeck, A., Burlingame, B., Gitz, V., El Bilali, H., Debs, P., & Belsanti, V. (2012). Towards the development of guidelines for improving the sustainability of diets and food consumption patterns: the Mediterranean Diet as a pilot study. CIHEAM-IAMB,Valenzano. Options Méditerranéennes, Série B, 70, 72.Google Scholar
  60. Maamar, S. (2013). Inter-governorate disparities in residential water demand in Tunisia: a discrete/continuous choice approach. Journal of Environmental Planning and Management, 56(8), 1192–1211.CrossRefGoogle Scholar
  61. Makhlouf, M., Frija, A., Chebil, A., Souissi, A., Stambouli, T., & Benalaya, A. (2017). Quantification of virtual water balance of Tunisia: flows embedded in the main produced, consumed and ex-changed agricultural commodities. New Medit: Mediterranean Journal of Economics, Agriculture and Environment, 16(2), 11–18.Google Scholar
  62. Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600.CrossRefGoogle Scholar
  63. Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401–415.CrossRefGoogle Scholar
  64. Nemecek, T., Jungbluth, N., Canals, L. M., & Schenck, R. (2016). Environmental impacts of food consumption and nutrition: where are we and what is next? The International Journal of Life Cycle Assessment, 21(5), 607–620.CrossRefGoogle Scholar
  65. ONAGRI. (2015). Annuaire statistique agricole. http://www.onagri.nat.tn/ . Accessed 10 September 2017.
  66. Padilla, M. (2008). Alimentation et évolution de la consommation. Les futures agricoles et alimentaires en Méditerranée, Paris, Presses de Sciences- Po-CIHEAM, 2008, 149–172.Google Scholar
  67. Padilla, M., Ahmed, Z., & Wassef, H. (2005). En Méditerranée : Sécurité Alimentaire Quantitative Mais Insécurité Qualitative. Les notes d’analyse du CIHEAM, n°4,19.Google Scholar
  68. Pérez-Espejo, R. H., Constantino-Toto, R. M., & Davila Ibanez, H. R. (2016). Water, food and welfare. Water footprint as a complementary approach to water management in Mexico. Springer Briefs in Environment, Security, Development and Peace, 23, –252.Google Scholar
  69. Prosperi, P. (2012). Sélection et formulation d'indicateurs spécifiques de la sécurité alimentaire durable (sustainable food security) en Méditerranée – Montpellier : CIHEAM-IAMM - 114. (Master of Science, IAMM, 2012, n°119).Google Scholar
  70. Ridoutt, B. G., & Pfister, S. (2010a). A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environmental Change, 20, 113–120.CrossRefGoogle Scholar
  71. Ridoutt, B. G., & Pfister, S. (2010b). Reducing humanity’s water footprint. Environmental Science and Technology, 44, 6019–6021.CrossRefGoogle Scholar
  72. Sáez-Almendros, S., Obrador, B., Bach-Faig, A., & Serra-Majem, L. (2013). Environmental footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environmental Health, 12(1), 1–8.CrossRefGoogle Scholar
  73. Sileshi, M., Kadigi, R., Mutabazi, K., & Sieber, S. (2019). Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: endogenous switching regression and propensity score matching approach. Food Security.  https://doi.org/10.1007/s12571-019-00943-w.
  74. Souissi, A., Hammami, R., Stambouli, T., & Benaalaya, A. (2017). Blue and green virtual water in the international trade of strategic agricultural products of Tunisia. Journal of New Sciences, Agriculture and Biotechnology, 43(4), 2363–2373.Google Scholar
  75. Tukker, A., Goldbohm, R. A., De Koning, A., Verheijden, M., Kleijn, R., Wolf, O., & Rueda-Cantuche, J. M. (2011). Environmental impacts of changes to healthier diets in Europe. Ecological Economics, 70(10), 1776–1788.CrossRefGoogle Scholar
  76. Vanham, D., & Bidoglio, G. (2013). A review on the indicator water footprint for the EU28. Ecological Indicators, 26, 61–75.CrossRefGoogle Scholar
  77. WHO. (2004). Food and health in Europe: a new basis for action. WHO Regional Publications. European Series n°92. Copenhagen.Google Scholar
  78. World Bank. (2017). World Bank national accounts data, and OECD National Accounts data files. https://data.worldbank.org/indicator/NY.GDP.MKTP.CD . Accessed 5 March 2019.

Copyright information

© International Society for Plant Pathology and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Higher Agronomic Institute of Chott MeriemUniversity of SousseSousseTunisia
  2. 2.International Livestock Research Institute (ILRI)NairobiKenya
  3. 3.Higher School of AgricultureUniversity of CarthageZaghouanTunisia
  4. 4.National Researches Institute of Rural Engineering, Water and ForestUniversity of CarthageTunisTunisia

Personalised recommendations