Advertisement

Food Security

, Volume 10, Issue 5, pp 1251–1262 | Cite as

Conservation agriculture in western China increases productivity and profits without decreasing resilience

  • Adam M. Komarek
Original Paper

Abstract

This study examined the economic and risk effects of conservation agriculture (CA) in western China using nine years of data from an agronomic field experiment and a case study for a typical crop-livestock farm. A CA system of a wheat-pea rotation with no-tillage and stubble retention was compared with the current practice of the same rotation but with conventional tillage and stubble removal. Risk was examined by computing the resistance and resilience of grain yields to climate shocks at the field scale, along with calculating the stability of yields and profits at the field and farm scale. Climate shocks were defined using the standardized precipitation evapotranspiration index. Resistance indicated the proximity of grain yields during a climate shock to average yields. Resilience indicated the rate of return towards average grain yields after a climate shock. At the field scale, CA increased grain yields by an average of 19.6% and increased profits without negatively affecting resistance or resilience. At the farm scale, CA increased profits by an average of 5%, increased the stability of profits by 33%, and reduced labor demands. Despite these gains, the adoption of CA in western China remains low. Results suggest that at present the private gains to farmers are not large enough to encourage the more widespread adoption of CA. Therefore, because CA also produces public benefits for conservation of the environment such as reduced erosion, financial incentives may be considered to assist CA adoption in specific farming systems.

Keywords

Cereal-legume rotation, Crop-livestock system, Gansu, Resistance, Risk JEL classification O33, Q5 

Notes

Acknowledgments

Lingling Li provided the data from the agronomic field experiment used in this study. This study benefited from discussions with William Bellotti. The Australian Centre for International Agricultural Research, Ministry of Science and Technology of China, Research Fund for the Doctoral Program of Higher Education of China, and Gansu Provincial Key Laboratory of Aridland Crop Science helped to fund the data collection for this study.

Compliance with ethical standards

Conflict of interest

The author declared no conflict of interest.

References

  1. Beguería, S., Vicente-Serrano, S. M., & Angulo-Martínez, M. (2010). A multiscalar global drought dataset: The SPEIbase: A new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society, 91(10), 1351–1356.CrossRefGoogle Scholar
  2. Bennett, M. T. (2008). China's sloping land conversion program: Institutional innovation or business as usual? Ecological Economics, 65(4), 699–711.CrossRefGoogle Scholar
  3. Bhim, A. & Karthik, N. (2011). Ecological economics of soil erosion: a review of the current state of knowledge. Annals of the New York Academy of Sciences, 1219(1), 134−152.Google Scholar
  4. Corbeels, M., Sakyi, R. K., Kühne, R. F. & Whitbread, A. (2014). Meta-analysis of crop responses to conservation agriculture in sub-Saharan Africa. CCAFS Report No. 12. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). https://ccafs.cgiar.org/publications/meta-analysis-crop-responses-conservation-agriculture-sub-saharan-africa#.VuhsqOIrKCg [accessed October 17, 2016]Google Scholar
  5. Fan, S., Pandya-Lorch, R., Yosef, S., Fritschel, H. & Zseleczky, L. (2014). The way forward for building resilience. In Resilience for food and nutrition security (Eds S. Fan, R. Pandya-Lorch and S. Yosef). Washington, D.C.: International Food Policy Research Institute (IFPRI).Google Scholar
  6. FAO (2018). FAOSTAT. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data [accessed July 11, 2018]
  7. Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., & Vanlauwe, B. (2015). Beyond Conservation Agriculture. Frontiers in Plant Science, 6.Google Scholar
  8. Hazell, P. B. R. (1971). A linear alternative to quadratic and semivariance programming for farm planning under uncertainty. American Journal of Agricultural Economics, 53(1), 53–62.CrossRefGoogle Scholar
  9. He, J., Li, H., McHugh, A. D., Wang, Q., Lu, Z., Li, W., & Zhang, Y. (2015). Permanent raised beds improved crop performance and water use on the North China Plain. Journal of Soil and Water Conservation, 70(1), 54–62.CrossRefGoogle Scholar
  10. Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? The Journal of Agricultural Science, 145(2), 127–137.CrossRefGoogle Scholar
  11. Homann-Kee Tui, S., Valbuena, D., Masikati, P., Descheemaeker, K., Nyamangara, J., Claessens, L., Erenstein, O., van Rooyen, A. & Nkomboni, D. (2015). Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe. Agricultural Systems, 134, 48−60.CrossRefGoogle Scholar
  12. Huang, G. B., Zhang, R. Z., Li, G. D., Li, L. L., Chan, K. Y., Heenan, D. P., Chen, W., Unkovich, M. J., Robertson, M. J., Cullis, B. R., & Bellotti, W. D. (2008). Productivity and sustainability of a spring wheat-field pea rotation in a semi-arid environment under conventional and conservation tillage systems. Field Crops Research, 107(1), 43–55.CrossRefGoogle Scholar
  13. Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574–−577.CrossRefPubMedGoogle Scholar
  14. Jia, Y., Li, F.-M., Zhang, Z.-h., Wang, X.-L., Guo, R., & Siddique, K. H. M. (2009). Productivity and water use of alfalfa and subsequent crops in the semiarid Loess Plateau with different stand ages of alfalfa and crop sequences. Field Crops Research, 114(1), 58–65.CrossRefGoogle Scholar
  15. Kassam, A., Friedrich, T., Derpsch, R., & Kienzle, J. (2015). Overview of the worldwide spread of conservation agriculture. Field Actions Science Reports. The Journal of Field Actions, 8, 1–11.Google Scholar
  16. Keil, A., D’souza, A., & McDonald, A. (2017). Zero-tillage is a proven technology for sustainable wheat intensification in the Eastern Indo-Gangetic Plains: what determines farmer awareness and adoption? Food Security, 9(4), 723–743.CrossRefGoogle Scholar
  17. Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48.CrossRefGoogle Scholar
  18. Komarek, A. M., McDonald, C. K., Bell, L. W., Whish, J. P. W., Robertson, M. J., MacLeod, N. D., & Bellotti, W. D. (2012). Whole-farm effects of livestock intensification in smallholder systems in Gansu, China. Agricultural Systems, 109, 16–24.CrossRefGoogle Scholar
  19. Komarek, A. M., Bell, L. W., Whish, J. P. M., Robertson, M. J., & Bellotti, W. D. (2015a). Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China. Agricultural Systems, 133, 63–72.CrossRefGoogle Scholar
  20. Komarek, A. M., Li, L. & Bellotti, W. D. (2015b). Whole-farm economic and risk effects of conservation agriculture in a crop-livestock system in western China. Agricultural Systems, 137(0), 220−226.Google Scholar
  21. Kuhn, N. J., Hu, Y., Bloemertz, L., He, J., Li, H., & Greenwood, P. (2016). Conservation tillage and sustainable intensification of agriculture: regional vs. global benefit analysis. Agriculture. Ecosystems and Environment, 216, 155–165.CrossRefGoogle Scholar
  22. Li, L., Zhang, R., Luo, Z., Liang, W., Xie, J., Cai, L., & Bellotti, B. (2014). Evolution of soil and water conservation in rain-fed areas of China. International Soil and Water Conservation Research, 2(1), 78–90.CrossRefGoogle Scholar
  23. Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., et al. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–−1072.CrossRefGoogle Scholar
  24. Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. (2008). Ecological and socioeconomic effects of China's policies for ecosystem services. Proceedings of the National Academy of Sciences, 105(28), 9477–9482.CrossRefGoogle Scholar
  25. Lü, Y., Fu, B., Feng, X., Zeng, Y., Liu, Y., Chang, R., Sun, G., & Wu, B. (2012). A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. Plos One, 7(2), e31782.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Monjardino, M., McBeath, T., Ouzman, J., Llewellyn, R., & Jones, B. (2015). Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt. Agricultural Systems, 137, 108–118.CrossRefGoogle Scholar
  27. Ngoma, H. (2018). Does minimum tillage improve the livelihood outcomes of smallholder farmers in Zambia? Food Security, 10(2), 381–396.CrossRefGoogle Scholar
  28. Ngwira, A. R., Thierfelder, C., Eash, N., & Lambert, D. (2013). Risk and maize-based cropping systems for smallholder Malawi farmers using conservation agriculture technologies. Experimental Agriculture, 49(04), 483–503.CrossRefGoogle Scholar
  29. Nolan, S., Unkovich, M., Yuying, S., Li, L., & Bellotti, W. (2008). Farming systems of the Loess Plateau, Gansu Province, China. Agriculture, Ecosystems and Environment, 124(1–2), 13–23.CrossRefGoogle Scholar
  30. Pannell, D. J., Llewellyn, R. S., & Corbeels, M. (2014). The farm-level economics of conservation agriculture for resource-poor farmers. Agriculture, Ecosystems and Environment, 187, 52–64.CrossRefGoogle Scholar
  31. Paten, A. M. (2008). Managment of livestock nutrition under subsistence farming conditions in Eastern Gansu Province, China. Bachelor of Science (Animal Science) thesis. In School of Agriculture, Food and Wine Adelaide: The University of Adelaide.Google Scholar
  32. Peterson, C. A., Eviner, V. T., & Gaudin, A. C. M. (2018). Ways forward for resilience research in agroecosystems. Agricultural Systems, 162, 19–27.CrossRefGoogle Scholar
  33. Pittelkow, C. M., Liang, X., Linquist, B. A., van Groenigen, K. J., Lee, J., Lundy, M. E., van Gestel, N., Six, J., Venterea, R. T. & van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365−368.CrossRefPubMedGoogle Scholar
  34. Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Robinson, L. W., Ericksen, P. J., Chesterman, S., & Worden, J. S. (2015). Sustainable intensification in drylands: What resilience and vulnerability can tell us. Agricultural Systems, 135, 133–140.CrossRefGoogle Scholar
  36. Rusinamhodzi, L., Corbeels, M., Wijk, M. T., Rufino, M. C., Nyamangara, J., & Giller, K. E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 31(4), 657–673.CrossRefGoogle Scholar
  37. Sabatier, R., Oates, L. G., Brink, G. E., Bleier, J., & Jackson, R. D. (2015). Grazing in an uncertain environment: Modeling the trade-off between production and robustness. Agronomy Journal, 107(1), 257–264.CrossRefGoogle Scholar
  38. Sahlu, T., Goetsch, A. L., Luo, J., Nsahlai, I. V., Moore, J. E., Galyean, M. L., Owens, F. N., Ferrell, C. L., & Johnson, Z. B. (2004). Nutrient requirements of goats: developed equations, other considerations and future research to improve them. Small Ruminant Research, 53(3), 191–219.CrossRefGoogle Scholar
  39. Serraj, R., & Siddique, K. H. M. (2012). Conservation agriculture in dry areas. Field Crops Research, 132, 1–6.CrossRefGoogle Scholar
  40. Shen, Y., Li, L., Chen, W., Robertson, M., Unkovich, M., Bellotti, W., & Probert, M. (2009). Soil water, soil nitrogen and productivity of lucerne–wheat sequences on deep silt loams in a summer dominant rainfall environment. Field Crops Research, 111(1–2), 97–108.CrossRefGoogle Scholar
  41. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T. S., Lamanna, C., & Eyre, J. X. (2017). How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Security, 9(3), 537–560.CrossRefGoogle Scholar
  42. Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.CrossRefGoogle Scholar
  43. Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20(11), 3313–3328.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36(1), 1–15.CrossRefGoogle Scholar
  45. Walker, B., Sayer, J., Andrew, N. L., & Campbell, B. (2010). Should enhanced resilience be an objective of natural resource management research for developing countries? Crop Science, 50, 10–19.CrossRefGoogle Scholar
  46. Wang, J., Huang, J., Zhang, L., Rozelle, S., & Farnsworth, H. F. (2010). Why is China's Blue Revolution so “Blue”? The determinants of conservation tillage in China. Journal of Soil and Water Conservation, 65(2), 113–129.CrossRefGoogle Scholar
  47. Ward, P. S., Bell, A. R., Droppelmann, K., & Benton, T. G. (2018). Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy, 70, 27–37.CrossRefGoogle Scholar
  48. Yong, G., Xiaohong, D., Yi, Y., Yubao, L., Yang, L., & Ji, W. (2016). Effects of tillage methods on soil carbon and wind erosion. Land Degradation and Development, 27(3), 583–591.CrossRefGoogle Scholar
  49. Yuan, T., Fengmin, L., & Puhai, L. (2003). Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agricultural Water Management, 60(3), 217–226.CrossRefGoogle Scholar
  50. Zhang, Q., Shen, Y., Nan, Z. B., Whish, J., Bell, L. & Bellotti, W. D. (2010). Production and nutritive value of alternative annual forage crop options in a rainfed region of western China. In 15th Agronomy Conference, Food Security from Sustainable Agriculture (Ed H. C. Dove, R. A.). New Zealand: Lincoln.Google Scholar
  51. Zhang, X., Yang, J., & Wang, S. (2011). China has reached the Lewis turning point. China Economic Review, 22(4), 542–554.CrossRefGoogle Scholar
  52. Zheng, C., Jiang, Y., Chen, C., Sun, Y., Feng, J., Deng, A., Song, Z., & Zhang, W. (2014). The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions. The Crop Journal, 2(5), 289–296.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. and International Society for Plant Pathology 2018

Authors and Affiliations

  1. 1.International Food Policy Research InstituteWashingtonUSA

Personalised recommendations