Advertisement

Food Security

, Volume 10, Issue 4, pp 1013–1031 | Cite as

Local agro-ecological condition-based food resources to promote infant food security: a case study from Benin

  • Flora Josiane ChadareEmail author
  • Nadia Fanou Fogny
  • Yann Eméric Madode
  • Juvencio Odilon G. Ayosso
  • Sèwanou Hermann Honfo
  • Folachodé Pierre Polycarpe Kayodé
  • Anita Rachel Linnemann
  • Djidjoho Joseph Hounhouigan
Original Paper
  • 221 Downloads

Abstract

Children are still undernourished in many developing countries. A way to address this issue is to make better use of local food resources. The present study documents local plant and animal resources used for feeding infants and young children across the agro-ecological zones (AEZ) of Benin, with a focus on the availability of resources and consumption forms. It describes similarities and differences among the AEZs and identifies proposals for infant food formulations at the AEZ level. A literature review was performed and supplemented with a survey in 42 villages of eight AEZs of Benin. The selection of municipalities was based on the prevalence of food insecurity. In total 969 people were interviewed through focus group discussions and individual interviews using pre-established interview checklists and questionnaires. Data were processed with statistical tools, including non-metric dimensional scaling analyses, descriptive statistics and Chi2 test of independence. Results showed disparities in the distribution and use of local food resources for infant foods in the AEZs. AEZ 1 represented by Karimama and AEZ 2 represented by Banikoara (both in the Sudanian zone, with about 900 mm rainfall per year in one long rainy season and one long dry season) had the lowest diversity of local food resources used in children’s feeding, while AEZ 5 represented by Aplahoué and Ouèssè (both in the Guinean zone, with about 1200 mm rainfall per year over two rainy seasons and two dry seasons), and AEZ 8 represented by Adjohoun and Bopa (both in the Guinean zone with about 1200 mm rain per year) had the highest diversity. The baobab tree (Adansonia digitata) and groundnut (Arachis hypogea) were the plant resources recording the highest number of usages for food in general and infant foods in particular. High similarities in the species used for infant food existed among AEZs 5, 6, 7 and 8 whereas AEZ 1 and AEZ 4 had no match with resources used for infants in the other AEZs, mainly due to food cultures and availability. These findings indicate the usefulness and efficiency of an approach to formulate generic infant food formulas based on grouping AEZs with similar resources. Further studies are needed to assess the quantitative availability of local food resources throughout the year, the links between food prices and purchasing power of the population, and to assess the bioavailability of nutrients in infant foods made from local food resources in relation to food preparation methods.

Keywords

Infant undernutrition Agro-ecological zone West Africa Complementary foods 

Notes

Acknowledgements

We acknowledge the Applied Research Fund (ARF) of NWO-WOTRO, The Netherlands, for funding the INFLOR project in which this work was performed. We also thank Djabar Adechian from “Institut de Statistiques et d’Analyse Economique du Bénin” for making available detailed statistical data by municipality. This project was implemented by a consortium of research institutions from Benin and the Netherlands (FSA/UAC and FQD/WU), and Benin practitioner organisations from public (Agence Béninoise pour la Sécurité Sanitaire des Aliments, ABSSA) and private (Groupe Pépite d’Or, GPO) sectors. The consortium was led by the private profit company, GPO. Authors are especially thankful to all consortium members and their collaborators.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Oral informed consent was obtained from all individual participants in the study.

References

  1. Achigan-Dako, E. G., Pasquini, M. W., Assogba-Komlan, F., N’danikou, S., Yédomonhan, H., Dansi, A., et al. (2010). Traditional vegetables in Benin. In Cotonou. Benin Imprimeries du: CENAP, Cotonou.Google Scholar
  2. AGVSA ( 2014). Analyse Globale de la Vulnérabilité et de la Sécurité Alimentaire (AGVSA): Programme Alimentaire Mondial, service de l’Analyse de la Sécurité Alimentaire (VAM).Google Scholar
  3. Akoegninou, A., Van der Burg, W. J., Van der Maesen, L. J. G., Adjakidjè, V., Essou, J. P., Sinsin, B., et al. (2006). Flore analytique du Bénin. République du Bénin: Université d’Abomey-Calavi, Cotonou. Google Scholar
  4. Akoègninou, A., Van der Burg, W. J., Van der Maesen, L. J. G., Adjakidjè, V., Essou, J. P., Sinsin, B., et al. (2006). Flore analytique du Bénin. République du Bénin: Université d’Abomey-Calavi, Cotonou. Google Scholar
  5. Alwan, A. (2011). Global status report on noncommunicable diseases 2010: World Health Organization.Google Scholar
  6. Anihouvi, P. P. (2002). Evaluation de l’état nutritionnel des enfants âgés de 18 à 30 mois et étude des principaux facteurs de risque de la malnutrition en milieu urbain du Sud-Bénin : Cas de Cotonou. Abomey-Calavi: Faculté des Sciences Agronomiques. Université d'Abomey-Calavi.Google Scholar
  7. Ashok, K. J., & Preeti, T. (2012). Nutritional value of some traditional edible plants used by tribal communities during emergency with reference to Central India. Indian Journal of Traditional Knowledge, 11(1), 51–57.Google Scholar
  8. Azagoh, K. R., Enoh, J., Niangue, B., Cissé, L., Oulai, S., & Andoh, J. (2013). Connaissances et pratiques des meres d’enfants de 6 a 18 mois relatives à la conduite du sevrage : Cas de l’hôpital général de marcory. Mali Medical, 28, 1–4.PubMedGoogle Scholar
  9. Barrett, C. B. (2010). Measuring food insecurity. Science, 327(5967), 825–828.CrossRefGoogle Scholar
  10. Benı́tez-Bribiesca, L. (1999). De la Rosa-Alvarez, I., & Mansilla-Olivares, A. Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics, 104(2), e21.PubMedGoogle Scholar
  11. Burchi, F., & De Muro, P. (2016). From food availability to nutritional capabilities: Advancing food security analysis. Food Policy, 60, 10–19.Google Scholar
  12. Buttigieg, P. L., & Ramette, A. (2014). A guide to statistical analysis in microbial ecology: A community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology, 90(3), 543–550.CrossRefGoogle Scholar
  13. Chadare, F. J. (2010). Baobab (Adansonia digitata L.) foods from Benin: composition, processing and quality.Google Scholar
  14. Chadare, F. J., Madode, Y. E., Fanou-Fogny, N., Kindossi, J. M., Ayosso, J. O. G., Honfo, S. H., et al. (2018). Indigenous food ingredients for complementary food formulations to combat infant malnutrition in Benin: A review. Journal of the Science of Food and Agriculture. 98(2), 439–455.  https://doi.org/10.1002/jsfa.8568.CrossRefGoogle Scholar
  15. CIA World Factbook. (2015). Population below poverty line. In I. In Mundi (Ed.).Google Scholar
  16. Codjia, J. T. C., Assogbadjo, A. E., & Ekué, M. R. M. (2003). Diversité et valorisation au niveau local des ressources végétales forestières alimentaire du Bénin. Cahiers Agricultures, 12, 1–12.Google Scholar
  17. Cordero, M. E., D'Acuña, E., Benveniste, S., Prado, R., Nuñez, J. A., & Colombo, M. (1993). Dendritic development in neocortex of infants with early postnatal life undernutrition. Pediatric Neurology, 9(6), 457–464.CrossRefGoogle Scholar
  18. Dillon, J. C. (1989). Les produits céréaliers dans l'alimentation de sevrage du jeune enfant en Afrique. John Libbrey. In Paris.Google Scholar
  19. Djagoun, C. A. M. S., Glèlè Kakaï, R., Konnon, D. D., Sewade, C., Kouton, M., & Bonou, W. (2010). Food and medicinal use of plant resources of the Oueme Superieur and N’Dali classified forests (northern Benin). Fruit, Vegetable and Cereal Science and Biotechnology, 4, 1–8.Google Scholar
  20. FAO. (2014). The state of food insecurity in the world 2014. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
  21. Grembombon, A. I. (2003). Evaluation des principaux facteurs de risque de la malnutrition chez les enfants de 6 à 36 mois dans la commune de Bopa. Abomey-Calavi: Faculté des Sciences Agronomiques, Université d'Abomey-Calavi.Google Scholar
  22. Hounguevou, R. (2016). Diversité linguistique et Transmission des langues dans les ménages : Quelle place au français ? XIXe colloque international de l'AIDELF à Strasbourg (France) 21 au 24 juin 2016 ; Configurations et Dynamiques familiales, 1–16.Google Scholar
  23. Ibironke, S. I. (2014). Formulation of infant weaning foods from vegetable proteins and cereal. American Journal of Food Technology, 9(2), 104–110.CrossRefGoogle Scholar
  24. IFPRI. (2014). Global nutrition report 2014. DC: Washington.Google Scholar
  25. INSAE (2015a). RGPH4 : Que retenir des effectifs de population en 2013 ?Google Scholar
  26. INSAE (2015b). Tableau de bord social 2013: Profils socio-économiques et indicateurs de développement. (pp. 254p.).Google Scholar
  27. Jusot, F., Khlat, M., Rochereau, T., & Serme, C. (2008). Job loss from poor health, smoking and obesity: A national prospective survey in France. Journal of Epidemiology and Community Health, 62(4), 332–337.CrossRefGoogle Scholar
  28. Kageliza, K. P., Muchori, M. D., Gichuru, G. M., Annmarie, W., & Michael, A. (2014). Determination of Mn, Fe, cu and Zn in indigenous complementary infant flour from Kenya by total-reflection x-ray fluorescence. Journal of Food and Nutrition Sciences, 2(4), 110–116.CrossRefGoogle Scholar
  29. Keast, D. R., Fulgoni, V. L., Nicklas, T. A., & O’Neil, C. E. (2013). Food sources of energy and nutrients among children in the United States: National health and nutrition examination survey 2003–2006. Nutrients, 5, 283–301.Google Scholar
  30. Kenkel, N. C., & Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology, 67(4), 919–928.CrossRefGoogle Scholar
  31. Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.CrossRefGoogle Scholar
  32. Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2), 115–129.CrossRefGoogle Scholar
  33. Kuhnlein, H. V., Erasmus, B., & Spigelski, D. (2009). Indigenous peoples’ food systems: The many dimensions of culture, diversity and environment for nutrition and health. Rome: FAO et Montréal, Canada.Google Scholar
  34. Latham, M. C. (2001). La nutrition dans les pays en Développement. Rome, Italie: FAO.Google Scholar
  35. Mello, J. A., Gans, K. M., Risica, P. M., Kirtania, U., Strolla, L. O., & Fournier, L. (2010). How is food insecurity associated with dietary behaviors? An analysis with low-income, ethnically diverse participants in a nutrition intervention study. Journal of the American Dietetic Association, 110(12), 1906–1911.CrossRefGoogle Scholar
  36. Mitchikpe, E. C. S., Dossa, R. A. M., Ategbo, E.-A. D., van Raaij, J., & Kok, F. J. (2010). Growth performance and iron status of rural beninese school-age children in post and pre-harvest season. African Journal of Food Agriculture Nutrition and Development, 10(1), 2024–2039.Google Scholar
  37. Banque Mondiale (2006). Equité et développement. Rapport sur le développement dans le monde. In B. m. Washington (Ed.): Banque Mondiale.Google Scholar
  38. PAM. (2014a). Analyse Globale de la Vulnérabilité et de la Sécurité Alimentaire (AGVSA), République du Bénin: AGVSAN. MAEP, INSAE: PAM.Google Scholar
  39. PAM. (2014b). Analyse Globale de la Vulnérabilité et de la Sécurité Alimentaire (AGVSA): Programme Alimentaire Mondial. Service de l’Analyse de la Sécurité Alimentaire (VAM). Google Scholar
  40. Pangaribowo, E. H., Gerber, N., & Tirero, M. (2013). Food and nutrition security indicators: A review. FOODSECURE project working paper 04. http://www.foodsecure.eu/Publicationdetail.aspx?id=13February 2013.
  41. Qasem, W., Fenton, T., & Friel, J. (2015). Age of introduction of first complementary feeding for infants: A systematic review. BMC Pediatrics, 15, 107–117.CrossRefGoogle Scholar
  42. Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science, 210(4468), 390–398.CrossRefGoogle Scholar
  43. Stohlgren, T. J. (2007). Measuring plant diversity: Lessons from the field. Oxford University Press.Google Scholar
  44. Stringer, R. (2016). Food poverty and insecurity: International Food inequalities. Chapter 2: Food security global overview: Caraher, M.Google Scholar
  45. Team, R. C. (2016). R: A language and environment for statistical computing.: R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  46. Toda, S. (2011). Polyphenol content and antioxidant effects in herb teas. Chinese Medicine, 2(01), 29.CrossRefGoogle Scholar
  47. Torgerson, W. S. (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17 (4):401–419CrossRefGoogle Scholar
  48. UNDP, & MEPN-Benin. Convention Cadre des Nations-Unies pour le Changement Climatique. In Programme d’action national d’adaptation aux changements climatiques du Bénin (PANA-BENIN), Cotonou, Bénin, 2008. Google Scholar
  49. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
  50. Zannou Tchoko, V. J., Bouaffou, K. G. M., Kouame, K. G., & Konan, B. (2011). Etude de la valeur nutritive de farines infantiles à base de manioc et de soja pour enfant en âge de sevrage (Vol. 80, Bulletin de la Société Royale des Sciences de Liège).Google Scholar
  51. Young, M. P., Scannell, J. W., O'Neill, M. A., Hilgetag, C. C., Burns, G. A. P. C., & Blakemore, C. (1995). Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Phil. Trans. R. Soc. Lond. B, 348(1325), 281–308.Google Scholar

Copyright information

© Springer Nature B.V. and International Society for Plant Pathology 2018

Authors and Affiliations

  • Flora Josiane Chadare
    • 1
    • 2
    Email author
  • Nadia Fanou Fogny
    • 1
  • Yann Eméric Madode
    • 1
  • Juvencio Odilon G. Ayosso
    • 1
  • Sèwanou Hermann Honfo
    • 3
  • Folachodé Pierre Polycarpe Kayodé
    • 1
  • Anita Rachel Linnemann
    • 4
  • Djidjoho Joseph Hounhouigan
    • 1
  1. 1.Laboratoire de Sciences des Aliments, Ecole de Nutrition et des Sciences et Technologies des Alimentaires, Faculté des Sciences AgronomiquesUniversité d’Abomey-Calavi (ENSTA/FSA/UAC)Abomey-CalaviBenin
  2. 2.Ecole des Sciences et Techniques de Conservation et de Transformation des Produits AgricolesUniversité Nationale d’Agriculture (ESTCTPA/UNA)SakétéBenin
  3. 3.Laboratoire de Biomathématiques et d’Estimations Forestières, Faculté des Sciences AgronomiquesUniversité d’Abomey-Calavi (LABEF/FSA/UAC)Abomey-CalaviBenin
  4. 4.Food Quality and DesignWageningen University (FQD/WU)WageningenThe Netherlands

Personalised recommendations