Food Security

, Volume 10, Issue 2, pp 273–285 | Cite as

Unlocking the multiple public good services from balanced fertilizers

  • Prem S. Bindraban
  • Christian O. Dimkpa
  • Scott Angle
  • Rudy Rabbinge
Review

Abstract

Fertilizers produce over half of the world’s food and permit less encroachment into pristine lands. Yet, the low uptake efficiency by crop plants causes nutrient losses that drive global change. Mitigating measures have been insufficient to address the problems, and policy interventions, NGO involvement, and R&D investments have been too insignificant to transform the fertilizer sector. Here, we discuss the contribution of balanced mineral fertilizers to increasing the nutritional value of crop produce to improve human nutrition and health; healthier plants to reduce biocide use; plant robustness to enhance tolerance to abiotic stresses; and increased metabolite production to improve taste and shelf-life. We reflect on raising awareness about these multiple fertilizer-based public good services for realizing several Sustainable Development Goals which can be achieved through a comprehensive nutrient assessment to catalyze transformation in research, policy and industry.

Keywords

Micronutrients Plant health Human health Food loss Resilience Innovative fertilizers Sector transformation 

Notes

Acknowledgements

This work was partially supported by funding from USAID’s Feed the Future Soil Fertility Technology Adoption, Policy Reform and Knowledge Management Project and by USDA grant 2016-67021-24985.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ahmad, S. T., & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47, 17–27.CrossRefGoogle Scholar
  2. Akeredolu, I., Oguntona, B. E., Okafor, C., & Osisanya, O. J. (2011). Iron, zinc, and copper malnutrition among primary school children in Lagos, Nigeria. Food and Nutrition Sciences, 2, 1063–1070.CrossRefGoogle Scholar
  3. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12–03. Rome: FAO.Google Scholar
  4. Alfthan, G., Eurola, M., Ekholm, P., Venäläinen, E. R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., & Aro, A. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–147.PubMedCrossRefGoogle Scholar
  5. Angle, S. J., Singh, U., Dimkpa, C. O., Bindraban, P. S., & Hellums, D. T. (2017). Role of fertilizers in climate-resilient agriculture. Proceedings of the International Fertilizer Society. London, p 802.Google Scholar
  6. Ashraf, M. Y., Iqbal, N., Ashraf, M., & Akhter, J. (2014). Modulation of physiological and biochemical metabolites in salt stressed rice by foliar application of zinc. Journal of Plant Nutrition, 37, 447–457.CrossRefGoogle Scholar
  7. Bagci, S. A., Ekiz, H., Yilmaz, A., & Cakmak, I. (2007). Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in central Anatolia. Journal of Agronomy and Crop Science, 193, 198–206.CrossRefGoogle Scholar
  8. Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32, 921–950.CrossRefGoogle Scholar
  9. Bänziger, M., & Long, J. (2000). The potential for increasing the iron and zinc density of maize through plant-breeding. Food and Nutrition Bulletin, 21, 397–400.CrossRefGoogle Scholar
  10. Barzman, M., & Dachbrodt-Saaydehb, S. (2011). Comparative analysis of pesticide action plans in five European countries. Pest Management Science, 67, 1481–1485.PubMedCrossRefGoogle Scholar
  11. Bedoussac, L., Journet, E.-P., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E. S., Prieur, L., & Justes, E. (2015). Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 35(3), 911–935.CrossRefGoogle Scholar
  12. Benzing, H., Henderson, K., Kessel, B., & Sulak, J. (1976). The absorptive capacities of bromeliad Trichomes. American Journal of Botany, 63(7), 1009–1014.CrossRefGoogle Scholar
  13. Bereuter, D., & Glickman, D. (2015). Healthy food for a healthy world: leveraging agriculture and food to improve global nutrition. The Chicago Council on Global Affairs. https://www.thechicagocouncil.org/sites/default/files/GlobalAg-HealthyFood_FINAL.pdf
  14. Bindraban, P. S. (2012). The need for agro-ecological intelligence to preparing agriculture for climate change. Journal of Crop Improvement, 26(3), 301–328.CrossRefGoogle Scholar
  15. Bindraban, P. S., Hengsdijk, H., Cao, W., Shi, Q., Thiyagarajan, T. M., van der Krogt, W., & Wardana, I. P. (2006). Transforming inundated rice cultivation. Water Resources Development, 22(1), 87–100.CrossRefGoogle Scholar
  16. Bindraban, P. S., Dimkpa, C. O., Nagarajan, L., Roy, A. H., & Rabbinge, R. (2015). Revisiting fertilizers and fertilization strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 51, 897–911.CrossRefGoogle Scholar
  17. Bing, Y. (2011). Effects of boron deficiency on growth and photosynthetic characteristics of cucumber seedlings. Horticulture & Seed, 2011–05.Google Scholar
  18. Bouwman, A. F., Beusen, A. H. W., Lassaletta, L., van Apeldoorn, D. F., van Grinsven, H. J. M., Zhang, J., & van Ittersum, M. K. (2017). Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Scientific Reports, 7, 40366.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Breslin, P. A. S. (2013). An evolutionary perspective on food and human taste. Current Biology, 23(9), R409–R418.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, 1–17.CrossRefGoogle Scholar
  21. Cakmak, I., & Römheld, V. (1997). Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil, 193(1), 71–83.CrossRefGoogle Scholar
  22. Cakmak, I., Pfeiffer, W. H., & McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chemistry, 87, 10–20.CrossRefGoogle Scholar
  23. Carson, R. (1962). Silent spring. New York: Houghton Mifflin Harcourt.Google Scholar
  24. Cavalcante, A. T., Sampaio, E. V. S. B., & Cavalcante, U. M. T. (2005). Interdependence between mother and daughter banana plants in their absorption and redistribution of phosphorus. Revista Brasileira de Fruticultura, 27, 255–259.CrossRefGoogle Scholar
  25. Cherif, M., Asselin, A., & Belanger, R. R. (1994). Defence responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology, 84, 236–242.CrossRefGoogle Scholar
  26. Cobo, J. G., Dercon, G., & Cadisch, G. (2010). Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges and progress. Agriculture, Ecosystems and Environment, 136(1–2), 1–15.CrossRefGoogle Scholar
  27. Conijn, J. G., Bindraban, P. S., Schröder, J. J., & Jongschaap, R. (2018). Can our food system meet food demand within planetary boundaries? Agriculture, Ecosystems and Environment, 251, 244–256.CrossRefGoogle Scholar
  28. Davis, D. R., Epp, M. D., & Riordan, H. D. (2004). Changes in USDA food composition data for 43 garden crops. Journal of the American College of Nutrition, 23, 669–682.PubMedCrossRefGoogle Scholar
  29. De Valença, A. W., Bake, A., Brouwer, I. D., & Giller, K. E. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8–14.CrossRefGoogle Scholar
  30. Dimkpa, C. O., & Bindraban, P. S. (2016). Micronutrients fortification for efficient agronomic production. Agronomy for Sustainable Development, 36, 1–26.CrossRefGoogle Scholar
  31. Dimkpa, C. O., & Bindraban, P. S. (2017). Nanofertilizers: New products for the industry? Journal of Agricultural and Food Chemistry.  https://doi.org/10.1021/acs.jafc.7b02150.
  32. Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I., & Anderson, A. J. (2013). Fate of CuO and ZnO nano and micro particles in the plant. Environmental Science and Technology, 47, 4734–4742.PubMedCrossRefGoogle Scholar
  33. Dimkpa, C. O., Bindraban, P. S., Fugice, J., Agyin-Birikorang, S., Singh, U., & Hellums, D. (2017a). Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 37, 5.CrossRefGoogle Scholar
  34. Dimkpa, C. O., White, J. C., Elmer, W. H., & Gardea-Torresdey, J. (2017b). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry, 65, 8552–8559.PubMedCrossRefGoogle Scholar
  35. Droppelmann, K. J., Snapp, S. S., & Waddington, S. R. (2017). Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa. Food Security, 9(1), 133–150.CrossRefGoogle Scholar
  36. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis has changed the world. Nature Geoscience, 1, 636–639.CrossRefGoogle Scholar
  37. Eurola, M., Ekholm, P., Ylinen, M., Koivistoinen, P., & Varo, P. (1991). Selenium in finish foods after beginning the use of selenate-supplemented fertilisers. Journal of the Science of Food and Agriculture, 56, 57–70.CrossRefGoogle Scholar
  38. Fan, M. S., Zhao, F. J., & Fairweather-Tait, S. J. (2008). Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology, 22, 315–324.PubMedCrossRefGoogle Scholar
  39. FAO. (1996). The state of the World’s plant genetic resources for food and agriculture. Rome: FAO.Google Scholar
  40. Farooq, M. A., & Dietz, K.-J. (2015). Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Frontiers in Plant Science, 6, 994.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fernandez, V., & Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences, 28(1–2), 36–68.CrossRefGoogle Scholar
  42. Freitas, A. S., Pozza, E. A., Pozza, A. A. A., Oliveira, M. G. F., Silva, H. R., Rocha, H. S., & Galvao, H. R. (2015). Impact of nutritional deficiency on yellow Sigatoka of banana. Australasian Plant Pathology, 44, 583–590.CrossRefGoogle Scholar
  43. Freitas, A. S., Pozza, E. A., Alves, M. C., Coelho, G., Rocha, H. S., & Pozza, A. A. A. (2016). Spatial distribution of yellow Sigatoka leaf spot correlated with soil fertility and plant nutrition. Precision Agriculture, 17, 93–107.CrossRefGoogle Scholar
  44. Fuglie, K. O., Heisey, P. W., King, J. L., Pray, C. E., Day-Rubenstein, K., Schimmelpfennig, D., Wang, S. L., & Karmarkar-Deshmukh, R. (2011). Research investments and market structure in the food processing, agricultural input, and biofuel industries worldwide. ERR-130. U.S. Dept. of Agriculture, Economic Research Service.  https://doi.org/10.2139/ssrn.2027051.
  45. Gaihre, Y. K., Singh, U., Islam, S. M. M., Huda, A., Islam, M. R., Satter, M. A., Sanabria, J., Islam, M. R., & Shah, A. L. (2015). Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma, 259, 370–379.CrossRefGoogle Scholar
  46. Gao, X. P., Zou, C. Q., Wang, L. J., & Zhang, F. S. (2004). Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition, 27, 1457–1470.CrossRefGoogle Scholar
  47. Garvin, D. F., Welch, R. M., & Finley, J. W. (2006). Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. Journal of the Science of Food and Agriculture, 86, 2213–2220.CrossRefGoogle Scholar
  48. Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences USA, 107(38), 16732–16737.CrossRefGoogle Scholar
  49. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.PubMedCrossRefGoogle Scholar
  50. Ginzberg, I., Minz, D., Faingold, I., Soriano, S., Mints, M., Fogelman, E., Warshavsky, S., Zig, U., & Yermiyahu, U. (2012). Calcium mitigated potato skin physiological disorder. American Journal of Potato Research, 89, 351–362.CrossRefGoogle Scholar
  51. Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., & Bonierbale, M. (2007). Nutritious subsistence food systems. Advances in Agronomy, 92, 1–74.CrossRefGoogle Scholar
  52. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). Global food losses and food waste: Extent, causes, and prevention. Rome: Food and Agricultural Organization.Google Scholar
  53. Haas, W., Krausmann, F., Wiedenhofer, D., & Heinz, M. (2015). How circular is the global economy? An assessment of material flows, waste production, and recycling in the European union and the world in 2005. Journal of Industrial Ecology, 19(5), 765–777.CrossRefGoogle Scholar
  54. Hartikainen, H. (2005). Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology, 18, 309–318.PubMedCrossRefGoogle Scholar
  55. Heffer, P., & Prud’homme, M. (2015). Fertilizer outlook 2015–2019. Proceedings of the 83rd Annual Conference of the International Fertilizer Industry Association (IFA), Istanbul, p 8. https://www.fertilizer.org/images/Library_Downloads/2015_ifa_istanbul_summary.pdf
  56. Huang, J., & Snapp, S. S. (2009). Potassium and boron nutrition enhance fruit quality in Midwest fresh market tomatoes. Communications in Soil Science and Plant Analysis, 40(11–12), 1937–1952.CrossRefGoogle Scholar
  57. IFDC. (2017). Fertilizer Deep Placement. https://ifdc.org/fertilizer-deep-placement/
  58. Jama, B., Kimani, D., Harawa, R., Mavuthu, A. K., & Sileshi, G. W. (2017). Maize yield response, nitrogen use efficiency and financial returns to fertilizer on smallholder farms in southern Africa. Food Security, 9(3), 577–593.CrossRefGoogle Scholar
  59. Jamil, M., Kanampiu, F. K., Karaya, H., Charnikhova, T., & Bouwmeester, H. J. (2012). Striga hermonthica parasitism in maize in response to N and P fertilisers. Field Crops Research, 134, 1–10.CrossRefGoogle Scholar
  60. Jones, D. L., Cross, P., Withers, P. J. A., DeLuca, T. H., Robinson, D. A., Quilliam, R. S., Harris, I. M., Chadwick, D. R., & Edwards-Jones, G. (2013). Review: Nutrient stripping: the global disparity between food security and soil nutrient stocks. Journal of Applied Ecology, 50, 851–862.CrossRefGoogle Scholar
  61. Joy, E. J. M., Stein, A. J., Young, S. D., Louise Ander, E., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1–2), 1–24.CrossRefGoogle Scholar
  62. Joy, E. J. M., Ahmad, W., Zia, M. H., Kumssa, D. B., Young, S. D., Ander, E. L., Watts, M. J., Stein, A. J., & Broadley, M. R. (2017). Valuing increased zinc (Zn) fertiliser-use in Pakistan. Plant and Soil, 411(1–2), 139–150.CrossRefGoogle Scholar
  63. Kamara, A. Y., Menkir, A., Badu-Apraku, B., & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes. Journal of Agricultural Science, 141, 43–50.CrossRefGoogle Scholar
  64. Karley, A. J., & White, P. J. (2009). Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Current Opinion in Plant Biology, 12(3), 291–298.PubMedCrossRefGoogle Scholar
  65. Kaur, S., Kaur, N., Siddique, K. H. M., & Nayyar, H. (2016). Beneficial elements for agricultural crops and their functional relevance in defense against stresses. Archives of Agronomy and Soil Science, 62(7), 905–920.CrossRefGoogle Scholar
  66. Kempen, B., Vereijken, P. F. G., Keizer, L. P. C., Ruipérez González, M., Bindraban, P., & Wendt, J. (2015). VFRC preliminary evaluation of the feasibility of using geospatial information to refine soil fertility recommendations. VFRC Report 2015/6 (p. 67). Washington, D.C.: Virtual Fertilizer Research Center.Google Scholar
  67. Kendristakis, M. (2017). Effect of micronutrients on cucumber postharvest quality. MSc Thesis Report, Horticulture and Product Physiology, Wageningen: Wageningen University.Google Scholar
  68. Kihara, J., & Njoroge, S. (2013). Phosphorus agronomic efficiency in maize-based cropping systems: A focus on western Kenya. Field Crops Research, 150, 1–8.CrossRefGoogle Scholar
  69. Kihara, J., Sileshi, G. W., Nziguheba, G., Kinyua, M., Zingore, S., & Sommer, R. (2017). Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa. Agronomy for Sustainable Development, 37, 25.CrossRefGoogle Scholar
  70. Laane, H.-M. (2016). The effects of the application of foliar sprays with stabilized silicic acid: An overview of the results from 2003-2014. SILICON, 9, 803–807.CrossRefGoogle Scholar
  71. Larbi, A., Morales, F., Abadía, J., & Abadía, A. (2003). Effects of branch solid Fe sulphate implants on xylem sap composition in field-grown peach and pear: Changes in Fe, organic anions and pH. Journal of Plant Physiology, 160, 1473–1481.PubMedCrossRefGoogle Scholar
  72. Lesschen, J. P., Stoorvogel, J. J., Smaling, E. M. A., Heuvelink, G. B. M., & Veldkamp, A. (2007). A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutrient Cycling in Agroecosystems, 78, 111–131.CrossRefGoogle Scholar
  73. Li, L. M., Wu, Y. H., & Zhao, X. X. (2010). Effect of boron on sucrose accumulation in watermelon and boron—Induce resistance to cucumber green mottle mosaic virus. Journal of China Agricultural University, 15, 57–62.Google Scholar
  74. López-Ráez, J. A. (2015). How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta, 243, 1375–1385.PubMedCrossRefGoogle Scholar
  75. Lorenz, K., & Lal, R. (2016). Environmental impact of organic agriculture. Advances in Agronomy, 139, 99–152.CrossRefGoogle Scholar
  76. Ma, B. L., Dwyer, L. M., Tollenaar, M., & Smith, D. L. (1998). Stem infusion of nitrogen-15 to quantify nitrogen remobilization in maize. Communications in Soil Science and Plant Analysis, 29, 305–317.CrossRefGoogle Scholar
  77. Marafon, A. C., & Endres, L. (2013). Silicon: Fertilization and nutrition in higher plants. Revista De Ciencias Agrarias, 56, 380–388.Google Scholar
  78. Martin, K. R. (2013). Silicon: The health benefits of a metalloid. Metal Ions in Life Sciences, 13, 451–473.PubMedCrossRefGoogle Scholar
  79. Mayer, A. M. (1997). Historical changes in the mineral content of fruits and vegetables. British Food Journal, 99, 207–211.CrossRefGoogle Scholar
  80. McClafferty, B., & Zuckermann, J. C. (2015). Cultivating nutritious food systems: a snapshot report (p. 47). Washington, DC: Global Alliance for Improved Nutrition (GAIN).Google Scholar
  81. McDermott, J., Johnson, N., Kadiyala, S., Kennedy, G., & Wyatt, A. J. (2015). Agricultural research for nutrition outcomes – rethinking the agenda. Food Security, 7(3), 593–607.CrossRefGoogle Scholar
  82. Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., & Therios, I. (2006). Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany, 56(1), 54–62.CrossRefGoogle Scholar
  83. Molden, D. (Ed.). (2007). Water for food, water for life: a comprehensive assessment of water Management in Agriculture. Colombo: International Water Management Institute.Google Scholar
  84. Monasterio, I., & Graham, R. D. (2000). Breeding for trace mineral in wheat. Food and Nutrition Bulletin, 21, 392–396.CrossRefGoogle Scholar
  85. Monreal, C. M., DeRosa, M., Mallubhotla, S. C., Bindraban, P. S., & Dimkpa, C. (2015). Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils, 52(3), 423–437.CrossRefGoogle Scholar
  86. Moreira, A., & Fageria, N. K. (2009). Yield, uptake, and retranslocation of nutrients in banana plants cultivated in upland soil of central Amazonian. Journal of Plant Nutrition, 32(3), 443–457.CrossRefGoogle Scholar
  87. Moreira, A., Castro, C., & Fageria, N. K. (2011). Effects of boron application on yield, foliar boron concentration, and efficiency of soil boron extracting solutions in a xanthic ferralsol cultivated with banana in Central Amazon. Communications in Soil Science and Plant Analysis, 42, 2169–2178.CrossRefGoogle Scholar
  88. Movahhedy-Dehnavy, M., Modarres-Sanavy, S. A. M., & Mokhtassi-Bidgoli, A. (2009). Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L) grown under water deficit stress. Industrial Crop Production, 30, 82–92.CrossRefGoogle Scholar
  89. Noack, S. R., McBeath, T. M., & McLaughlin, M. J. (2011). Potential for foliar phosphorus fertilisation of dryland cereal crops: A review. Crop & Pasture Science, 62(8), 659–669.Google Scholar
  90. Nziguheba, G., Tossah, B. K., Diels, J., Franke, A. C., Aihou, K., Iwuafor, E. N. O., Nwoke, C., & Merckx, R. (2009). Assessment of nutrient deficiencies in maize in nutrient omission trials and long-term field experiments in the west African savanna. Plant and Soil, 314, 143.CrossRefGoogle Scholar
  91. Oliver, M. A., & Gregory, P. J. (2015). Soil, food security and human health: a review. European Journal of Soil Science, 66, 257–276.CrossRefGoogle Scholar
  92. Palta, J. P. (2010). Improving potato tuber quality and production by targeted calcium nutrition: The discovery of tuber roots leading to a new concept in potato nutrition. Potato Research, 53(4), 267–275.CrossRefGoogle Scholar
  93. Pandey, N., Pathak, G. C., Pandey, D. K., & Pandey, R. (2009). Heavy metals, Co, Ni, Cu, Zn and Cd, produce oxidative damage and evoke differential antioxidant responses in spinach. Brazilian Journal of Plant Physiology, 21, 2.CrossRefGoogle Scholar
  94. Phattarakul, N., Rerkasem, B., Li, L. J., Wu, L. H., Zou, C. Q., Ram, H., Sohu, V. S., Kang, B. S., Surek, H., Kalayci, M., Yazici, A., Zhang, F. S., & Cakmak, I. (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil, 361, 131–141.CrossRefGoogle Scholar
  95. Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O., & Bindraban, P. S. (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis, 48(16), 1895–1920.CrossRefGoogle Scholar
  96. Rockström, J., Steffen, W., Noone, K., Persson, A., Chapin III, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., & Schellnhuber, H. J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14, 32.CrossRefGoogle Scholar
  97. Rodella, L. F., Bonazza, V., Labanca, M., Lonati, C., & Rezzani, R. (2014). A review of the effects of dietary silicon intake on bone homeostasis and regeneration. The Journal of Nutrition, Health and Aging, 18, 820–826.PubMedCrossRefGoogle Scholar
  98. Rodrigues, M. G. V., Ruggiero, C., Natale, W., & Pacheco, D. D. (2007). ‘Prata-Anã’ banana plant nutrition and production fertilized with zinc and boron via rhizome. Revista Brasileira de Fruticultura Jaboticabal – SP, 29, 645–651.CrossRefGoogle Scholar
  99. Ros, G. H., van Rotterdam, A. M. D., Bussink, D. W., & Bindraban, P. S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, 404(1–2), 99–112.CrossRefGoogle Scholar
  100. Savant, N. K., & Stangel, P. J. (1990). Deep placement of urea supergranules in transplanted rice: principles and practices. Fertilizer Research, 25, 1–83.CrossRefGoogle Scholar
  101. Scholz, R. W., Roy, A. H., Brand, F. S., Hellums, D. T., & Ulrich, A. E. (2014). Sustainable phosphorus management. A global transdisciplinary roadmap. Dordrecht: Springer Science+Business Media.CrossRefGoogle Scholar
  102. Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, A., & Wiesner, M. R. (2016). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology, 10, 3.Google Scholar
  103. Scott, P. M., Barber, P. A., Hardy, G. E., & Hardy, S. J. (2015). Novel phosphite and nutrient application to control Phytophthora cinnamomi disease. Australasian Plant Pathology, 44, 431–436.CrossRefGoogle Scholar
  104. Servin, A., Elmer, W., Mukherjee, A., De la Torre-Roche, R., Hamdi, H., White, J. C., Bindraban, P. S., & Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant diseases and enhance crop yield. Journal of Nanoparticle Research, 17, 92.CrossRefGoogle Scholar
  105. Shafiee-Jood, M., & Cai, X. (2016). Reducing food loss and waste to enhance food security and environmental sustainability. Environmental Science and Technology, 50(16), 8432–8443.PubMedCrossRefGoogle Scholar
  106. Shi, Y. C., Sun, B., & Liu, W. Q. (2012). Sucrose phosphate synthase plays a key role in boron-promoted sucrose synthesis in tobacco leaves. Journal of Plant Nutrition and Soil Science, 175(6), 854–859.CrossRefGoogle Scholar
  107. Shukla, A. K., Babu, P. S., Tiwari, P. K., Prakash, C., Patra, A. K., & Patnaik, M. C. (2015). Mapping and frequency distribution of current micronutrient deficiencies in soils in Telangana for their precise management. Indian Journal of Fertilisers, 11, 33–43.Google Scholar
  108. Smithson, P. C., McIntyre, B. D., Gold, C. S., Ssali, H., & Kashaija, I. N. (2001). Nitrogen and potassium fertilizer vs. nematode and weevil effects on yield and foliar nutrient status of banana in Uganda. Nutrient Cycling in Agroecosystems, 59, 239–250.CrossRefGoogle Scholar
  109. Sonneveld, C., & Voogt, W. (2009). Plant nutrition of greenhouse crops. Springer, Dordrecht Heidelberg London and New York.Google Scholar
  110. Sonobe, K., Hattori, T., An, P., Tsuji, W., Eneji, A. E., Kobayashi, S., Kawamura, Y., Tanaka, K., & Inanaga, S. (2010). Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition, 34, 71–82.CrossRefGoogle Scholar
  111. Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sorlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1–10.CrossRefGoogle Scholar
  112. Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant and Soil, 335, 133–154.CrossRefGoogle Scholar
  113. Subbaiah, L. V., Prasad, T. N. V. K. V., Krishna, T. G., Sudhakar, P., Reddy, B. R., & Pradeep, T. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L). Journal of Agricultural and Food Chemistry, 64, 3778–3788.PubMedCrossRefGoogle Scholar
  114. Sutton, M. A., Bleeker, A., Howard, C. M., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H. J. M., Abrol, Y. P., Adhya, T. K., Billen, G., Davidson, E. A., Datta, A., Diaz, R., Erisman, J. W., Liu, X. J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R. W., Sims, T., Westhoek, H., & Zhang, F. S. (2013). Our nutrient world: the challenge to produce more food and energy with less pollution (pp. 114). Edinburgh: NERC/Centre for Ecology & Hydrology.Google Scholar
  115. Van Vliet, J. A., Slingerland, M., & Giller, K. E. (2015). Mineral Nutrition of Cocoa, a review. The Netherlands: Plant Production Systems Group, Wageningen University http://edepot.wur.nl/356090.Google Scholar
  116. Vanlauwe, B., Descheemaeker, K., Giller, K., Huising, J., Merckx, R., Nziguheba, G., Wendt, J., & Zingore, S. (2015). Integrated soil fertility management in Sub-Saharan Africa: unravelling local adaptation. The Soil, 1, 491–508.CrossRefGoogle Scholar
  117. Vinceti, M., Grill, P., Malagoli, C., Filippini, T., Storani, S., Malavolti, M., & Michalke, B. (2015). Selenium speciation in human serum and its implications for epidemiologic research: a cross-sectional study. Journal of Trace Elements in Medicine and Biology, 31, 1–10.PubMedCrossRefGoogle Scholar
  118. Voogt, W., Blok, C., Eveleens, B., Marcelis, L., & Bindraban, P.S. (2013). Foliar fertilizer application – Preliminary review. Washington: VFRC, VFRC Report 2013/2. pp 43.Google Scholar
  119. Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., & Xing, B. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environmental Science and Technology, 46, 4434–4441.PubMedCrossRefGoogle Scholar
  120. Wang, Y., Zou, C., Mirza, Z., Li, H., Zhang, Z., Li, D., Xu, C., Zhou, X., Shi, X., Xie, D., He, X., & Zhang, Y. (2016). Cost of agronomic biofortification of wheat with zinc in China. Agronomy for Sustainable Development, 36, 44.CrossRefGoogle Scholar
  121. Watson, J. L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A., & Anderson, A. J. (2015). The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals, 28, 101–112.PubMedCrossRefGoogle Scholar
  122. White, P. J., & Broadley, M. R. (2005). Historical variation in the mineral composition of edible horticultural products. The Journal of Horticultural Science and Biotechnology, 80, 660–667.CrossRefGoogle Scholar
  123. White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  124. WRR (Wetenschappelijke Raad voor het Regeringsbeleid). (1995). Sustained risks: A lasting phenomenon. The Hague: Scientific Council for Government Policy.Google Scholar
  125. Xiong, T. T., Leveque, T., Austruy, A., Goix, S., Schreck, E., Dappe, V., Sobanska, S., Foucault, Y., & Dumat, C. (2014). Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environmental Geochemistry and Health, 36, 897–909.PubMedCrossRefGoogle Scholar
  126. Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528, 51–59.PubMedGoogle Scholar
  127. Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R. Z., et al. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil, 361, 119–130.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature and International Society for Plant Pathology 2018

Authors and Affiliations

  • Prem S. Bindraban
    • 1
  • Christian O. Dimkpa
    • 2
  • Scott Angle
    • 2
  • Rudy Rabbinge
    • 3
  1. 1.European-Netherlands Office of International Fertilizer Development Center (IFDC)Muscle ShoalsUSA
  2. 2.IFDCMuscle ShoalsUSA
  3. 3.Wageningen University and ResearchWageningenThe Netherlands

Personalised recommendations