Advertisement

CEAS Space Journal

, Volume 11, Issue 4, pp 475–483 | Cite as

The challenges of measuring methane from space with a LIDAR

  • Haris RirisEmail author
  • Kenji Numata
  • Stewart Wu
  • Molly Fahey
Original Paper
  • 18 Downloads

Abstract

Remote sensing of methane fluxes has been highlighted as one of the measurement goals of the NASA 2017 Earth Science Decadal Survey. Measuring methane from space and airborne platforms with an active (laser) remote sensing instrument presents several technology and measurement challenges that need to be met in order to provide accurate and precise data. The instrument must be able to make continuous measurements day and night, over all seasons and at all latitudes. It must have a high signal-to-noise ratio and must be relatively immune to biases from aerosol/cloud scattering, spectroscopic and meteorological data uncertainties, and other systematic errors. In this paper, we will discuss the technology challenges, options and tradeoffs to measure methane from space and airborne platforms.

Keywords

Methane Optical parametric amplifiers Optical parametric oscillators LIDAR Laser spectroscopy 

Notes

References

  1. 1.
    Intergovernmental Panel on Climate Change: IPCC Fifth Assessment Report. Cambridge Univ Press, New York (2013)Google Scholar
  2. 2.
    Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., et al.: Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmos Chem Phys 17(18), 11135–11161 (2017)CrossRefGoogle Scholar
  3. 3.
    Nisbet, E.G., Manning, M.R., Dlugokencky, E.J., Fisher, R.E., Lowry, D., Michel, S.E., Lund Myhre, C., et al.: Very strong atmospheric methane growth in the four years 2014–2017: implications for the Paris agreement. Global Biogeochem Cycles 33, 318–342 (2018)CrossRefGoogle Scholar
  4. 4.
    Turner, A.J., Frankenberg, C., Kort, E.A.: Interpreting contemporary trends in atmospheric methane. Proc Natl Acad Sci 116, 2805–2813 (2019)CrossRefGoogle Scholar
  5. 5.
    Board, Space Studies, National Academies of Sciences, Engineering, and Medicine: Thriving on our changing planet: a decadal strategy for earth observation from space. National Academies Press, Washington (2019)Google Scholar
  6. 6.
    Sellers, Piers J., Schimel, David S., Moore, Berrien, Liu, Junjie, Eldering, Annmarie: Observing carbon cycle–climate feedbacks from space. Proc Natl Acad Sci 115(31), 7860–7868 (2018)CrossRefGoogle Scholar
  7. 7.
    Ehret, G., Philippe, B., Pierangelo, C., Alpers, M., Millet, B., Abshire, J., Bovensmann, H., et al.: MERLIN: a French-German space lidar mission dedicated to atmospheric methane. Remote Sens 9(10), 1052 (2017)CrossRefGoogle Scholar
  8. 8.
    Sun, X.: Lidar sensors from space. In: Liang, S. (ed.) Comprehensive remote sensing, pp. 412–434. Elsevier, Amsterdam (2018)CrossRefGoogle Scholar
  9. 9.
    Amediek, A., Ehret, G., Fix, A., Wirth, M., Büdenbender, C., Quatrevalet, M., Kiemle, C., Gerbig, C.: CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions. Appl Opt 56, 5182–5197 (2017)CrossRefGoogle Scholar
  10. 10.
    Abshire, J.B., Ramanathan, A.K., Riris, H., Allan, G.R., Sun, X., Hasselbrack, W.E., Mao, J., et al.: Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector. Atmos Meas Tech 11, 4 (2018)CrossRefGoogle Scholar
  11. 11.
    Riris, Haris, Numata, Kenji, Stewart, Wu, Gonzalez, Brayler, Rodriguez, Michael, Scott, Stan, Kawa, Stephan, Mao, Jianping: Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform. J Appl Remote Sens 11(3), 034001 (2017)CrossRefGoogle Scholar
  12. 12.
    Yu, Jirong, Petros, Mulugeta, Singh, Upendra N., Refaat, Tamer F., Reithmaier, Karl, Remus, Ruben G., Johnson, William: An airborne 2-μm double-pulsed direct-detection lidar instrument for atmospheric CO2 column measurements. J Atmos Ocean Technol 34(2), 385–400 (2017)CrossRefGoogle Scholar
  13. 13.
    Riris, H., Rodriguez, M., Mao, J., Allan, G., Abshire, J.: Airborne demonstration of atmospheric oxygen optical depth measurements with an integrated path differential absorption lidar. Opt Express 25(23), 29307–29327 (2017)CrossRefGoogle Scholar
  14. 14.
    Spiers, G.D., et al.: Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection. Appl Opt 50(14), 2098–2111 (2011)CrossRefGoogle Scholar
  15. 15.
    Dobler, J.T., et al.: Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar. Appl Opt 52(12), 2874–2892 (2013)CrossRefGoogle Scholar
  16. 16.
    Nehrir AR, Hair JW, Ferrare RA, Hostetler CA, Kooi SA, Notari A, Harper DA et al (2018) The high altitude lidar observatory (HALO): a multi-function lidar and technology testbed for airborne and space-based measurements of water vapor and methane. In AGU Fall Meeting AbstractsGoogle Scholar
  17. 17.
    Obland MD, Corbett AM, Lin B, Meadows B, Campbell JF, Kooi S, Fan TF et al (2018) Advancements towards active remote sensing of CO2 from space using intensity-modulated, continuous-Wave (IM-CW) lidar. In sensors, systems, and next-generation satellites XXII. International Society for Optics and Photonics, 10785:1078509Google Scholar
  18. 18.
    MarkusT, Neumann T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., et al.: The ice, cloud, and land elevation satellite-2 (ICESat-2): science requirements, concept, and implementation. Remote Sens Environ 190, 260–273 (2017)CrossRefGoogle Scholar
  19. 19.
    Winker DM, Pelon JR, McCormick MP (2003) The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In lidar remote sensing for industry and environment monitoring III. International Society for Optics and Photonics, vol. 4893, pp. 1–12Google Scholar
  20. 20.
    Sun, Xiaoli, Abshire, James B., Beck, Jeffrey D., Mitra, Pradip, Reiff, Kirk, Yang, Guangning: HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths. Opt Express 25(14), 16589–16602 (2017)CrossRefGoogle Scholar
  21. 21.
    Sun X, Abshire JB, Lauenstein JM, Sullivan III W, Beck J, Hubbs JE (2018) Evaluation of space radiation effects on HgCdTe avalanche photodiode arrays for lidar applications. In infrared technology and applications XLIV. International Society for Optics and Photonics vol. 10624, p. 106240GGoogle Scholar
  22. 22.
    Fields R, Sun X, Abshire JB, Beck J, Rawlings RM, Hinkley D (2015) A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements. In geoscience and remote sensing symposium (IGARSS). IEEE International, Paper FR2.B1, pp. 5312–5315, 26–31Google Scholar
  23. 23.
    Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., Bernath, P.F., Birk, M., et al.: The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiative Transf 203, 3–69 (2017)CrossRefGoogle Scholar
  24. 24.
    Delahaye, T., Maxwell, S.E., Reed, Z.D., Lin, H., Hodges, J.T., Sung, K., Devi, V.M., Warneke, T., Spietz, P., Tran, H.: Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission. J Geophys Res Atmos 121(12), 7360–7370 (2016)CrossRefGoogle Scholar
  25. 25.
    Refaat, T.F., et al.: Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements. Appl Opt 54(6), 1387–1398 (2015)CrossRefGoogle Scholar
  26. 26.
    Menzies, Robert T., Tratt, David M.: Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. Appl Opt 42(33), 6569–6577 (2003)CrossRefGoogle Scholar
  27. 27.
    Bruneau, D., Gibert, F., Flamant, P.H., Pelon, J.: Complementary study of differential absorption lidar optimization in direct and heterodyne detections. Appl Optics 45, 4898–4908 (2006)CrossRefGoogle Scholar
  28. 28.
    Menzies, Robert T., Spiers, Gary D., Jacob, Joseph: Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: source and sink detection and environmental impacts on retrievals. J Atmos Oceanic Technol 31(2), 404–421 (2014)CrossRefGoogle Scholar
  29. 29.
    Ramanathan, A., Mao, J., Allan, G.R., Riris, H., Weaver, C.J., Hasselbrack, W.E., Browell, E.V., Abshire, J.B.: Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar. Applied Physics Letters 103, 214102 (2013).  https://doi.org/10.1063/1.4832616 CrossRefGoogle Scholar
  30. 30.
    Ehret, G., Kiemle, C., Wirth, M., Amediek, A., Fix, A., Houweling, S.: Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl Phys B 90, 593 (2008)CrossRefGoogle Scholar
  31. 31.
    Sun, X., Abshire, J.B.: Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation. Opt Express 20(19), 21291 (2012)CrossRefGoogle Scholar
  32. 32.
    Kiemle, C., et al.: Sensitivity studies for a space-based methane lidar mission. Atmos Meas Tech 4(10), 2195 (2011)CrossRefGoogle Scholar
  33. 33.
    Refaat, T.F., Ismail, S., Nehrir, A.R., Hair, J.W., Crawford, J.H., Leifer, I., Shuman, T.: Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms. Opt Express 21(25), 30415–30432 (2013)CrossRefGoogle Scholar
  34. 34.
    Werle, Peter: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence. Appl Phys B Lasers Opt 102(2), 313–329 (2011)CrossRefGoogle Scholar
  35. 35.
    Wagner, Gerd A., Plusquellic, David F.: Ground-based, integrated path differential absorption LIDAR measurement of CO2, CH4, and H2O near 1.6 μm. Appl Opt 55(23), 6292–6310 (2016)CrossRefGoogle Scholar
  36. 36.
    Chen, J.R., Numata, K., Wu, S.T.: Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra. Opt Express 22(21), 26055 (2014)CrossRefGoogle Scholar
  37. 37.
    Fix A, Büdenbender C, Wirth M, Quatrevalet M, Amediek A, Kiemle C, Ehret G (2011) Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII. International Society for Optics and Photonics, vol. 8182, p. 818206Google Scholar
  38. 38.
    Li S, Riris H, Numata K, Wu S, Poulios D, Ramanathan A, Abshire J, Krainak M (2012) Tunable narrow linewidth laser source for a methane lidar. Aerospace Conference 2012, IEEE, pp. 1–8Google Scholar
  39. 39.
    Numata, Kenji, Chen, Jeffrey R., Stewart, TWu: Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser. Opt Express 20(13), 14234–14243 (2012)CrossRefGoogle Scholar
  40. 40.
    Morrison GB, Sherman J, Estrella S, Moreira RL, Leisher PO, Mashanovitch ML, Stephen M, Numata K, Wu S, Riris H (2017) New semiconductor laser technology for gas sensing applications in the 1650 nm range. In lidar remote sensing for environmental monitoring 2017. International Society for Optics and Photonics, vol. 10406, p. 1040605Google Scholar
  41. 41.
    Chuang Ti, Burns P, Walters EB, Wysocki T, Deely T, Losse A, Le K et al (2013) Space-based, multi-wavelength solid-state lasers for NASA’s Cloud Aerosol Transport System for International Space Station (CATS-ISS). In solid state lasers XXII: technology and devices. International Society for Optics and Photonics, vol. 8599, p. 85990NGoogle Scholar
  42. 42.
    Engin D, Darab I, Burton J, Fouron JL, Kimpel F, Mathason B, Gupta S, Storm M (2014) Highly-efficient, high-energy pulse-burst Yb-doped fiber laser with transform limited linewidth. In SPIE defense + security. International Society for Optics and Photonics, pp. 908112–908112Google Scholar
  43. 43.
    Jiang S (2016) Pulsed single frequency fiber lasers. In EPJ Web of Conferences, EDP Sciences, vol. 119, p. 06002Google Scholar
  44. 44.
    White, Kenneth O., Schleusener, Stuart A.: Coincidence of Er: YAG laser emission with methane absorption at 1645.1 nm. Appl Phys Lett 21(9), 419–420 (1972)CrossRefGoogle Scholar
  45. 45.
    Wang, X., et al.: Dual-wavelength Q-switched Er:YAG laser around 1.6 µm for methane differential absorption lidar. Laser Phys Lett 10(11), 115804 (2013)CrossRefGoogle Scholar
  46. 46.
    Tang, P., et al.: Stable and wavelength-locked Q-switched narrow-linewidth Er: YAG laser at 1645 nm. Opt Express 23(9), 11037–11042 (2015)CrossRefGoogle Scholar
  47. 47.
    Fritsche, H., Lux, O., Wang, X., Zhao, Z., Eichler, H.J.: Resonantly diode pumped Er:YAG laser systems emitting at 1645 nm for methane detection. Laser Phys Lett 10(10), 105805 (2013)CrossRefGoogle Scholar
  48. 48.
    Gao, Chunqing, Zhu, Lingni, Wang, Ran, Gao, Mingwei, Zheng, Yan, Wang, Lei: 6.1 W single frequency laser output at 1645 nm from a resonantly pumped Er: YAG nonplanar ring oscillator. Opt Lett 37(11), 1859–1861 (2012)CrossRefGoogle Scholar
  49. 49.
    Kudryashov I, Kotelnikov E (2017) Tunable Q-switched solid state laser for methane detection. SPIE LASE. International Society for Optics and Photonics, pp. 100821I–100821IGoogle Scholar
  50. 50.
    Mackenzie J, Grant-Jacob J, Beecher S, Riris H, Anthony WY, Shepherd DP, Eason RW (2017) Er:YGG planar waveguides grown by pulsed laser deposition for LIDAR applications. SPIE LASE. International Society for Optics and Photonics, pp. 100820A–100820AGoogle Scholar
  51. 51.
    Burns PM, Chen M, Pachowicz D, Litvinovitch S, Fitzpatrick F, Sawruk NW (2018) Single Frequency Er:YAG methane/water vapor DIAL source. In applications of lasers for sensing and free space communications. Optical Society of America, pp. SW3H–2Google Scholar
  52. 52.
    Chen M, Rudd WJ, Hansell J, Pachowicz D, Litvinovitch S, Burns P, Sawruk NW (2019) Er:YAG methane lidar laser technology. In laser radar technology and applications XXIV. International Society for Optics and Photonics, vol. 11005, p. 110050QGoogle Scholar
  53. 53.
    Mackenzie JI, Kurilchick SV, Prentic JJ, Grant-Jacob JA, Carpenter LG, Gates JC, Smith PG et al (2019) 1.6-micron Er: YGG waveguide amplifiers. In solid state lasers XXVIII: technology and devices. International Society for Optics and Photonics, vol. 10896, p. 1089604Google Scholar
  54. 54.
    Sawruk NW, Stephen MA, Litvinovitch S, Edelman JE, Albert MM, Edwards RE, Culpepper CF, Rudd WJ, Fakhoury E, Hovis FE (2013) Space qualified laser transmitter for NASA’s ICESat-2 mission. In solid state lasers XXII: technology and devices. International Society for Optics and Photonics, vol. 8599, p. 85990OGoogle Scholar
  55. 55.
    Stephen M, Yu A, Chen J, Numata K, Wu S, Gonzales B, Han L et al (2018) Fiber-based laser transmitter technology maturation for spectroscopic measurements from space. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, pp. 1853–1856Google Scholar
  56. 56.
    Yu A, Stephen M, Chen J, Numata K, Wu S, Gonzalez B, Han L et al (2018) Development of a spaceborne fiber-based laser MOPA transmitter. In 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, pp. 1–2Google Scholar
  57. 57.
    General environmental verification standard. Available at https://standards.nasa.gov/standard/gsfc/gsfc-std-7000. Accessed 18 Aug 2019
  58. 58.
    Durand Y, Caron J, Hélière A, Bézy JL, Meynart R (2017) LIDAR technology developments in support of ESA Earth observation missions. In International Conference on Space Optics—ICSO 2008. International Society for Optics and Photonics, vol. 10566, p. 105661FGoogle Scholar
  59. 59.
    Ott MN, Parvini C, Bontzos A, Thomes WJ, Switzer R, Matyseck M, Onuma E (2019) Space flight optoelectronics and photonics qualification. Available at https://ntrs.nasa.gov/search.jsp?R=20190026990. Accessed 18 Aug 2019
  60. 60.
    Bousquet, P., Pierangelo, C., Bacour, C., Marshall, J., Peylin, P., Ayar, P.V., Ehret, G., et al.: Error budget of the methane remote lidar mission and its impact on the uncertainties of the global methane budget. J Geophys Res Atmos 123(20), 11–766 (2018)CrossRefGoogle Scholar
  61. 61.
    Tellier, Yoann, Pierangelo, Clémence, Wirth, Martin, Gibert, Fabien, Marnas, Fabien: Averaging bias correction for the future space-borne methane IPDA lidar mission MERLIN. Atmos Meas Tech 11(10), 5865–5884 (2018)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Haris Riris
    • 1
    Email author
  • Kenji Numata
    • 1
  • Stewart Wu
    • 1
  • Molly Fahey
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations