Advertisement

Influence of transpiration cooling on second-mode instabilities investigated on hypersonic, conical flows

  • Viola WartemannEmail author
  • Giannino Ponchio Camillo
  • Philipp Reiter
  • Jens Neumann
  • Alexander Wagner
Original Paper
  • 21 Downloads

Abstract

In the present study, the influence of active cooling on hypersonic boundary-layer transition at different Mach numbers, from 7 up to 10, is investigated. The analyses are carried out on a \(7^\circ\) half-angle, blunted cone with different nose radii and various gas injection mass flow rates. In all cases, low mass fluxes, which do not inducing visible shocks in the schlieren images, are applied. As injection gas nitrogen is used. At the considered free stream conditions, second modes are the dominant boundary-layer instabilities, which are consequently the focus of this study. The stability analyses are performed by means of the stability code NOLOT, NOnLOcal Transition analysis, of the German Aerospace Center (DLR). The influence of different mass injections on the frequencies and growth rates of the second modes is analyzed in detail. The effect on the transition onset locations is discussed. The numerical predictions are compared with experimental results. The experimental data referred to in the present study were obtained in the DLR High Enthalpy Shock Tunnel Göttingen.

Keywords

Transpiration cooling Second-mode Hypersonic boundary-layer transition Cone HEG 

Notes

References

  1. 1.
    Weihs, H., Hald, H., Reimer, T., Fischer, I.: Development of a CMC Nose Cap for X-3. In: 52nd International Astronautical Congress (2001). IAF-01-I.3.01Google Scholar
  2. 2.
    Weihs, H.: SHEFEX II Mission Overview and First Results. In: 4th International ARA Days, Arcachon (2013)Google Scholar
  3. 3.
    Savino, R., Fumo, L.S.M.D.S., Sciti, D.: Arc-Jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J. Eur. Ceram. Soc. 28(9), 1899–1907 (2008.  https://doi.org/10.1016/j.jeurceramsoc.2007.11.021 CrossRefGoogle Scholar
  4. 4.
    Kütemeyer, M., Helmreich, T., Rosiwal, S., Koch, D.: Influence of zirconium-based alloys on manufacturing and mechanical properties of ultra high temperature ceramic matrix composites. Adv. Appl. Ceram. 117(S1), 62 (2018).  https://doi.org/10.1080/17436753.2018.1509810 CrossRefGoogle Scholar
  5. 5.
    Kendall, R., Rindal, R., Bartlett, E.: Thermochemical ablation. In: AIAA Thermophysics Specialist Conference (1965). AIAA-Paper1965-642Google Scholar
  6. 6.
    McManus, H.L., Springer, G.S.: High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites 1. analysis. J. Compos. Mater. 26(2), 206–229 (1992).  https://doi.org/10.1177/002199839202600204 CrossRefGoogle Scholar
  7. 7.
    Loehle, S., Staebler, T., Reimer, T., Cefalu, A.: Photogrammetric surface analysis of ablation processes in high-enthalpy air plasma flow. AIAA J. 53, 11 (2015).  https://doi.org/10.2514/1.J053728 CrossRefGoogle Scholar
  8. 8.
    Kim, S.I., Hassan, I.: Numerical study of film cooling scheme on a blunt-nosed body in hypersonic flow. J. Therm. Sci. Eng. Appl. (2011).  https://doi.org/10.1115/1.4005052 Google Scholar
  9. 9.
    Böhrk, H., Wartemann, V., Eggers, T., Martinez Schramm, J., Wagner, A., Hannemann, K.: Shock tunnel testing of the transpiration-cooled heat shield experiment AKTiV. In: 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference (Tours, France, 2012). AIAA-Paper 2012-5935Google Scholar
  10. 10.
    Böhrk, H.: Transpiration-cooled hypersonic flight experiment: Setup, flight measurement, and reconstruction. J. Spacecr. Rockets 52(3), 674 (2015).  https://doi.org/10.2514/1.A33144 CrossRefGoogle Scholar
  11. 11.
    Schneider, S.: Flight data for boundary-layer transition at hypersonic and supersonic speeds. J. Spacecr. Rockets 36(1), 8 (1999).  https://doi.org/10.2514/2.3428 CrossRefGoogle Scholar
  12. 12.
    Schneider, S.: Hypersonic laminar–turbulent transition on circular cones and scramjet forebodies. Process Aerosp. Sci. 40(1–2), 1 (2004).  https://doi.org/10.1016/j.paerosci.2003.11.001 Google Scholar
  13. 13.
    Morkovin, M.V.: Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. Techreport AFFDL-TR-68-149, Air Force Flight Dynamics Lab. (1969). DTIC citation AD-686178Google Scholar
  14. 14.
    Schneider, S.P.: Hypersonic boundary-layer transition with ablation and blowing. J. Spacecr. Rockets 47(2), 225 (2010).  https://doi.org/10.2514/1.43926 CrossRefGoogle Scholar
  15. 15.
    Mack, L.M.: Boundary layer linear stability theory. AGARD - special course on stability and transition of laminar flow R-709, 2 (1984)Google Scholar
  16. 16.
    Mack, A., Hannemann, V.: Validation of the unstructured DLR-TAU-code for hypersonic flows. In: 32nd AIAA Fluid Dynamics Conference and Exhibit (St. Louis, Missouri, 2002). AIAA2002-3111Google Scholar
  17. 17.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR Tau-code: Recent applications in research and industry. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006)Google Scholar
  18. 18.
    Reimann, B., Hannemann, V.: Numerical investigation of double-cone and cylinder experiments in high enthalpy flows using the DLR TAU code. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010).  https://doi.org/10.2514/6.2010-1282
  19. 19.
    Hannemann, V.: Numerical investigation of an effusion cooled thermal protection material. ICCFD4 (2006)Google Scholar
  20. 20.
    Reiter, P.: Transition prediction for hypersonic conical flows with gas injection. Master’s thesis, Technical University Braunschweig (2016)Google Scholar
  21. 21.
    Bottin, B.: Aerothermodynamic model of an inductively-coupled plasma wind tunnel: numerical and experimental determination of the facility performance. Ph.D. thesis (1999)Google Scholar
  22. 22.
    Esser, B.: Die Zustandsgrößen im Stoßwellenkanal als Ergebnisse eines exakten Riemannlösers. Ph.D. thesis, TH Aachen (1991)Google Scholar
  23. 23.
    Wartemann, V., Wagner, A., Wagnild, R., Pinna F., Miró Miró F., Tanno, H., Johnson, H.: High enthalpy effects on hypersonic boundary layer transition. J. Spacecraft Rockets (2018).  https://doi.org/10.2514/1.A34281 Google Scholar
  24. 24.
    Wagner, A.: Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon–carbon ceramic with random microstructure. Ph.D. thesis, Katholieke Universiteit Leuven (2014)Google Scholar
  25. 25.
    Hein, S., Bertolotti, F.P., Simen, M., Hanifi, A., Henningson, D.: Linear nonlocal instability analysis - the linear NOLOT code. Tech. Rep. IB-223-94 A56, DLR (1994)Google Scholar
  26. 26.
    Wartemann, V.: Mack-moden-dämpfung mittels mikroporöser oberflächen im hyperschall. Ph.D. thesis, Technische Universität Braunschweig (2014)Google Scholar
  27. 27.
    Wagner, A., Stuart, L., Martinez Schramm, J., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H., Ito, K.: Experimental investigation of hypersonic boundary-layer transition on a cone model in the High Enthalpy Shock Tunnel (HEG) at Mach 7.5. In: 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. International Space Planes and Hypersonic Systems and Technologies Conferences (2011).  https://doi.org/10.2514/6.2011-2374
  28. 28.
    Pagella, A., Rist, U., Wagner, S.: Numerical investigations of small-amplitude disturbances in a boundary layer with impinging shock wave at Ma = 4.8. Phys. Fluids 14(7), 2088 (2002).  https://doi.org/10.1063/1.1480265 CrossRefzbMATHGoogle Scholar
  29. 29.
    Fedorov, A., Soudakov, V., Leyva, I.: Stability analysis of high-speed boundary-layer flow with gas injection. In: 7th AIAA Theoretical Fluid Mechanics Conference. AIAA AVIATION Forum (2014).  https://doi.org/10.2514/6.2014-2498.AIAA2014-2498. AIAA2014-2498
  30. 30.
    Saric, W.: Physical description of boundary-layer transition: Experimental evidence. Tech. rep., AGARD Report 793: Special Course on Progress in Transition Modelling (1994)Google Scholar
  31. 31.
    Gronvall, J., Johnson, H., Candler, G.: Boundary-layer stability analysis of the high enthalpy shock tunnel transition experiments. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Aerospace Sciences Meetings (2009).  https://doi.org/10.2514/6.2009-938.AIAA938-2009. AIAA938-2009
  32. 32.
    Wagnild, R., Candler, G., Leyva, I., Jewell, J., Hornung, H.: High enthalpy effects on two boundary layer disturbances in supersonic and hypersonic flow. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Aerospace Sciences Meetings (2010).  https://doi.org/10.2514/6.2010-1244.AIAA1244-2010. AIAA1244-2010
  33. 33.
    Hannemann, K., Martinez Schramm, J., Wagner, A., Ponchio Camillo, G.: The high enthalpy shock tunnel göttingen (HEG) of the German aerospace center (DLR). J. Large-Scale Res. Facil. (2018).  https://doi.org/10.17815/jlsrf-4-168 Google Scholar

Copyright information

© CEAS 2019

Authors and Affiliations

  • Viola Wartemann
    • 1
    Email author
  • Giannino Ponchio Camillo
    • 2
  • Philipp Reiter
    • 1
  • Jens Neumann
    • 1
  • Alexander Wagner
    • 2
  1. 1.Spacecraft DepartmentDLR BraunschweigBraunschweigGermany
  2. 2.Spacecraft DepartmentDLR GöttingenGöttingenGermany

Personalised recommendations