Advertisement

On the accuracy of the SGP4 to predict stellar occultation events using ENVISAT/GOMOS data and recommendations for the ALTIUS mission

  • Jan Thoemel
  • Nina Mateshvili
  • Philippe Demoulin
  • Filip Vanhellemont
  • Didier Pieroux
  • Christine Bingen
  • Emmanuel Dekemper
  • Ghislain Franssens
  • Charles Robert
  • Didier Fussen
Original Paper
  • 20 Downloads

Abstract

In preparation for the operations of the ALTIUS mission, research is carried out to assess the accuracy of the SGP4 orbital propagator in predicting stellar occultation events. The quantification of the accuracy and its consequent improvement will enable reliable measurement planning and, therefore, maximize the number of measurements. To this end, predictions are made for the timing of occultations for the GOMOS instrument on-board the ENVISAT, which are then compared to actual occultation occurrences. It is found that the error is substantial but follows a trend that can be interpolated. This enables devising a method for highly accurate predictions given a sufficient number of data points. Statistically significant results for the accuracy of the propagator and a calibration method are presented. Recommendations for a measurement planning procedure of ALTIUS are formulated.

Keywords

SGP4 Astrodynamics Accuracy GOMOS ENVISAT ALTIUS 

Notes

Acknowledgements

The authors gratefully acknowledge the support of colleagues to this research. We thank, in particular, Ms. Fiona Singarayar and Mr. Lawrence Byerley for reviewing the manuscript and providing invaluable advice. Moreover, we appreciate the financial assistance by the European Space Agency under PRODEX contract 4000118430, approved by the Belgian Science Policy (BELSPO), and guidance of the technical officer Marline Claessens. The careful considerations and discussion of the Journal’s reviewers and the editor have improved this publication, which we are grateful for.

References

  1. 1.
    Fussen, D., Dekemper, E., Errera, Q., Franssens, G., Mateshvili, N., Pieroux, D., Vanhellemont, F.: The ALTIUS mission. Atmospheric Measurement Techniques Discussions (2016).  https://doi.org/10.5194/amt-2016-213
  2. 2.
    Bermyn, J., Du Pre, T., Bernaerts, D., Baudoux, D.: Proba 'spacecraft family' small autonomous satellites-a Belgian innovative exportproduct. In: Proceedings of the 4S Symposium: Small Satellites, Systems and Services, ESA SP-571 (2004)Google Scholar
  3. 3.
    Fussen, D., Vanhellemont, F., Dodion, J., Bingen, C., Mateshvili, N., Daerden, F., Fonteyn, D., Errera, Q., Chabrillat, S., Kyrölä, E., Tamminen, J., Sofieva, V., Hauchecorne, A., Dalaudier, F., Bertaux, J.-L., Renard, J.-B., Fraisse, R., d’Andon, O.F., Barrot, G., Guirlet, M., Mangin, A., Fehr, T., Snoeij, P., Saavedra, L.: A global OClO stratospheric layer discovered in GOMOS stellar occultation measurements. Geophys. Res. Lett. 33, L13815 (2006).  https://doi.org/10.1029/2006GL026406 CrossRefGoogle Scholar
  4. 4.
    Jones, A., Urban, J., Murtagh, D.P., Eriksson, P., Brohede, S., Haley, C., Degenstein, D., Bourassa, A., von Savigny, C., Sonkaew, T., et al.: Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmos. Chem. Phys. 9, 6055–6075 (2009)CrossRefGoogle Scholar
  5. 5.
    Montzka, S.A., Dutton, G.S., Yu, P., Ray, E., Portmann, R.W., Daniel, J.S., Kuijpers, L., Hall, B.D., Mondeel, D., Siso, C., et al.: An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature. 557, 413 (2018)CrossRefGoogle Scholar
  6. 6.
    Hoots, F.R., Roehrich, R.L.: Spacetrack Report #3: Models for Propagation of the NORAD Element Sets. U.S. Air Force Aerospace Defense Command, Colorado Springs, CO. (1980)Google Scholar
  7. 7.
    Bennett, J., Sang, J., Smith, C., Zhang, K.: Improving low-Earth orbit predictions using two-line element data with bias correction. In: Advanced Maui Optical and Space Surveillance Technologies Conference. vol. 1, p. 46 (2012)Google Scholar
  8. 8.
    Flohrer, T., Krag, H., Klinkrad, H.: Assessment and categorization of TLE orbit errors for the US SSN catalogue. Risk. 8, 10–11 (2008)Google Scholar
  9. 9.
    Levit, C., Marshall, W.: Improved orbit predictions using two-line elements. Adv. Space Res. 47, 1107–1115 (2011)CrossRefGoogle Scholar
  10. 10.
    Aida, S., Kirschner, M., Wermuth, M., Kiehling, R.: Collision avoidance operations for LEO satellites controlled by GSOC. Space OpsAIAA. 71, 2010–2298 (2010)Google Scholar
  11. 11.
    Fortescue, P., Swinerd, G., Stark, J.: Spacecraft systems engineering. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  12. 12.
    Hoots, F.R.: Reformulation of the Brouwer geopotential theory for improved computational efficiency. Celest. Mech. 24, 367–375 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Benveniste, J., Roca, M., Levrini, G., Vincent, P., Baker, S., Zanife, O., Zelli, C., Bombaci, O.: The radar altimetry mission: RA-2, MWR, DORIS and LRR. ESA Bull. 106, 25101–25108 (2001)Google Scholar
  14. 14.
    Kuiper, D., Garcia Matatoros, M.: Analysis of Envisat orbit maintenance strategies to improve/increase Envisat ASAR interferometry opportunities. In: Proceedings of the 20th  International Symposium on Space Flight Dynamics, Annapolis, Maryland, USA, 24–28 September (2007)Google Scholar

Copyright information

© CEAS 2018

Authors and Affiliations

  • Jan Thoemel
    • 1
    • 2
  • Nina Mateshvili
    • 2
  • Philippe Demoulin
    • 2
  • Filip Vanhellemont
    • 2
  • Didier Pieroux
    • 2
  • Christine Bingen
    • 2
  • Emmanuel Dekemper
    • 2
  • Ghislain Franssens
    • 2
  • Charles Robert
    • 2
  • Didier Fussen
    • 2
  1. 1.GomSpace SarlEsch-sur-AlzetteLuxembourg
  2. 2.Royal Belgian Institute for Space AeronomyUccle/brusselsBelgium

Personalised recommendations