Advertisement

Fisheries Science

, Volume 84, Issue 6, pp 1051–1062 | Cite as

Effect of Lactococcus lactis K-C2 on the growth performance, amino acid content and gut microflora of amberjack Seriola dumerili

  • Nguyen Thi Hue Linh
  • Setsuko Nagai
  • Noriko Nagasaka
  • Seika Okane
  • Yousuke Taoka
Original Article Aquaculture

Abstract

This study aimed to evaluate the effect of Lactococcus lactis K-C2 on the growth performance, microbial diversity, and release of free amino acids in the intestinal tract and the edible parts of young amberjack, Seriola dumerili. Fish were fed a diet with or without strain K-C2 (2 × 1010 cfu/g feed) for 25 days. The results indicated that the growth performance of fish in the treated group was significantly higher than those in the control group (p < 0.05). The amount of five amino acids (aspartate, sarcosine, taurine, alanine, and arginine) in the gut content and 13 of 21 amino acids in the edible parts of fish in the treated group were significantly higher (p < 0.05) than those in the control group. Sphingomonas, Propionibacterium, and Mycobacterium were observed in gut microflora of fish in both the control and treated groups. Staphylococcus and Kocuria were detected in one sample from the control and treated groups; Acinetobacter and Acidobacteria were found in one sample from the control group. L. lactis was only found in one sample in the treated group. In conclusion, the dietary administration of probiotic L. lactis stimulated growth, reduced feed consumption, and improved the nutritional value of cultured amberjack.

Keywords

Lactococcus lactis Amberjack Growth performance Amino acids Microbial diversity 

Abbreviations

AAs

Amino acids

1-MetHis

1-Methylhistidine

3-MetHis

3-Methylhistidine

GABA

γ-Aminobutyrate

Ala

Alanine

Arg

Arginine

Asn

Asparagine

Asp

Aspartate

Cit

Citrulline

Cys

Cysteine

Glu

Glutamate

Gln

Glutamine

Gly

Glycine

His

Histidine

HyPro

Hydroxyproline

Ile

Isoleucine

Leu

Leucine

Lys

Lysine

Met

Methionine

Orn

Ornithine

Phe

Phenylalanine

Pro

Proline

Sar

Sarcosine

Ser

Serine

Thr

Threonine

Trp

Tryptophan

Tyr

Tyrosine

Val

Valine

Tau

Taurine

cfu

Colony-forming unit

DGGE

Denaturing gradient gel electrophoresis

FCR

Feed conversion ratio

LC–MS

Liquid chromatography–mass spectrometry

PCR

Polymerase chain reaction

Notes

Acknowledgment

We are very grateful to all members of Miyazaki Prefectural Fisheries Research Institute in Miyazaki, Japan for maintaining the fish before our starting experiment.

References

  1. Adel M, Yeganeh S, Dadar M, Giri SS (2017) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Probiotics Antimicrob Protein 9:150–156CrossRefGoogle Scholar
  2. Al Atrouni A, Hamze M, Kempf M (2016) Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 7:1–12CrossRefGoogle Scholar
  3. Association of Official Analytical Chemists (AOAC) International (1997) In: Cunniff PA (ed) Official methods of analysis of AOAC international, 16th edn. AOAC, Gaithersburg, MarylandGoogle Scholar
  4. Atyah MAS, Zamri-saad M, Siti-zahrah A (2010) First report of methicillin-resistant Staphylococcus aureus from cage-cultured tilapia (Oreochromis niloticus). Vet Microbiol 144:502–504CrossRefPubMedGoogle Scholar
  5. Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945CrossRefGoogle Scholar
  6. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bernbom N, Licht TR, Brogren C, Jelle B, Johansen AH, Badiola I, Vogensen FK, Nørrung B (2006) Effects of Lactococcus lactis on composition of intestinal microbiota: role of nisin. Appl Environ Microbiol 72:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium. Genome Res 11:731–753CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borah D, Gogoi O, Adhikari C, Kakoti BB (2016) Isolation and characterization of the new indigenous Staphylococcus sp. DBOCP06 as a probiotic bacterium from traditionally fermented fish and meat products of Assam state. Egypt J Basic Appl Sci 3:232–240CrossRefGoogle Scholar
  10. Chaudhary A, Qazi JI (2014) Probiotic antagonism of Sphingomonas sp. against Vibrio anguillarum exposed Labeo rohita fingerlings. Adv Life Sci 4:156–165Google Scholar
  11. Chen HM, Chi H, Chiu NC, Huang FY (2015) Kocuria kristinae: a true pathogen in pediatric patients. J Microbiol Immunol Infect 48:80–84CrossRefPubMedGoogle Scholar
  12. Dai Z, Wu Z, Hang S, Zhu W, Wu G (2015) Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol Hum Reprod 21:389–409CrossRefPubMedGoogle Scholar
  13. Dudley EG, Steele JL (2001) Lactococcus lactis LM0230 contains a single aminotransferase involved in aspartate biosynthesis, which is essential for growth in milk. Microbiology 147:215–224CrossRefPubMedGoogle Scholar
  14. Folch J, Ascoli I, Lees M, Meath JA, LeBaron FN (1951) Preparation of lipid extracts from brain tissue. J Biol Chem 195:833–841Google Scholar
  15. Forster RP, Goldstein L (1979) Amino acids and cell volume regulation. Yale J Biol Med 52:497–515PubMedPubMedCentralGoogle Scholar
  16. Foster T (1996) Staphylococcus. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  17. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378CrossRefPubMedGoogle Scholar
  18. Gauthier DT, Rhodes MW (2009) Mycobacteriosis in fishes: a review. Vet J 180:33–47CrossRefPubMedGoogle Scholar
  19. Goupil-feuillerat N, Cocaign-bousquet M, Godon J et al (1997) Dual role of α-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285–6293CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heuer H, Krsek M, Baker P, Smalla K (1997) Analysis of Actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241PubMedPubMedCentralGoogle Scholar
  21. Hossain S, Koshio S, Ishikawa M, Yokoyama S (2017) Effects of dietary administration of inosine on growth, immune response, oxidative stress and gut morphology of juvenile amberjack, Seriola dumerili. Aquaculture 468:534–544CrossRefGoogle Scholar
  22. Huber I, Spanggaard B, Appel KF, Rossen L, Nielsen T, Gram L (2004) Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum). J Appl Microbiol 96:117–132CrossRefPubMedGoogle Scholar
  23. Itano T, Kawakami H, Kono T, Sakai M (2006) Live vaccine trials against nocardiosis in yellowtail Seriola quinqueradiata. Aquaculture 261:1175–1180CrossRefGoogle Scholar
  24. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kato G, Kato K, Saito K, Pe Y, Kondo H, Aoki T, Hirono I (2011) Vaccine efficacy of Mycobacterium bovis BCG against Mycobacterium sp. infection in amberjack Seriola dumerili. Fish Shellfish Immunol 30:467–472CrossRefPubMedGoogle Scholar
  26. Kielak AM, Barreto CC, Kowalchuk GA, Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7:1–16Google Scholar
  27. Kim DH, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664CrossRefPubMedGoogle Scholar
  28. Lapujade P, Loubiere P (1998) Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Appl Environ Microbiol 64:2485–2489PubMedPubMedCentralGoogle Scholar
  29. Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM (2014) A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Anal Technol Biomed Life Sci 944:166–174CrossRefGoogle Scholar
  30. Li P, Mai K, Trushenski J, Wu G (2008) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids 37:43–53CrossRefPubMedGoogle Scholar
  31. Linh NTH, Sakai K, Taoka Y (2018) Screening of lactic acid bacteria isolated from fermented food as potential probiotics for aquacultured carp and amberjack. Fish Sci 84:101–111CrossRefGoogle Scholar
  32. Makino M (2011) Fisheries management in Japan. Springer Science + Business Media B.V., BerlinCrossRefGoogle Scholar
  33. Mohanty B, Mahanty A, Ganguly S, Sankar TV, Chakraborty K, Rangasamy A, Paul B, Sarma D, Mathew S, Asha KK, Behera B, Aftabuddin Md, Debnath D, Vijayagopal P, Sridhar N, Akhtar MS, Sahi N, Mitra T, Banerjee S, Paria P, Das D, Das P, Vijayan KK, Laxmanan PT, Sharma AP (2014) Amino acid compositions of 27 food fishes and their importance in clinical nutrition. J Amino Acids.  https://doi.org/10.1155/2014/269797 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nakada M (2008) Capture-based aquaculture of yellowtail. FAO Fisheries Technical Paper, pp 199–215Google Scholar
  35. Nakajima N, Kawanishi M, Imamura S, Hirano F, Uchiyama M, Yamamoto K, Nagai H, Futami K, Katagiri T, Maita M, Kijima M (2014) Development of a serology-based assay for efficacy evaluation of a lactococcicosis vaccine in Seriola fish. Fish Shellfish Immunol 38:135–139CrossRefPubMedGoogle Scholar
  36. Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573CrossRefGoogle Scholar
  37. Nguyen TL, Park C-I, Kim D-H (2017) Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture 471:113–120CrossRefGoogle Scholar
  38. Nomura M, Kimoto H, Someya Y (1999) Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int J Syst Bacteriol 49:163–166CrossRefPubMedGoogle Scholar
  39. Peton V, Le Loir Y (2014) Staphylococcus aureus in veterinary medicine. Infect Genet Evol 21:602–615CrossRefPubMedGoogle Scholar
  40. Portman M (2017) Effect of dietary moisture on growth and intestinal histology in California yellowtail, Seriola dorsalis. Open Access Theses 675. https://scholarlyrepository.miami.edu/oa_theses/657/. Accessed 26 Apr 2017
  41. Rabah H, Luiz F (2017) Dairy Propionibacteria: versatile probiotics. Microorganisms 5:1–17Google Scholar
  42. Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492CrossRefGoogle Scholar
  43. Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl A (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.). The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841CrossRefGoogle Scholar
  44. Ringø E, Zhou Z, Vecino JLG, Wadsworth S, Romero J, Krogdahl A, Olsen RE, Dimitroglou A, Foey A, Davies S, Owen M, Lauzon HL, Martinsen LL, De Schryver P, Bossier P, Sperstad S, Merrifield DL (2016) Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquac Nutr 22:219–282CrossRefGoogle Scholar
  45. Saeedi M, Shahidi F, Mortazavi SA, Milani E, Yazdi FT (2015) Isolation and identification of lactic acid bacteria in winter salad (Local Pickle) during fermentation using 16S rRNA gene sequence analysis. J Food Saf 35:287–294CrossRefGoogle Scholar
  46. Saini VP, Ojha ML, Gupta MC, Nair P, Sharma A, Luhar V (2014) Effect of dietary probiotic on growth performance and disease resistance in Labeo rohita (Ham.) fingerlings. Int J Fish Aquat Stud 1:7–11Google Scholar
  47. Salze GP, Davis DA (2015) Taurine: a critical nutrient for future fish feeds. Aquaculture 437:215–229CrossRefGoogle Scholar
  48. Schmitz A, Riesner D (2006) Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Anal Biochem 354:311–313CrossRefPubMedGoogle Scholar
  49. Sequeiros C, Garces ME, Vallejo M, Marguet ER, Olivera NL (2015) Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol 197:449–458CrossRefPubMedGoogle Scholar
  50. Soltani M, Masouleh AS, Ahmadi M, Pourkazemi M, Taherimirghaed A (2016) Antibacterial activity, antibiotic susceptibility and probiotic use of lactic acid bacteria (LAB) in Persian sturgeon (Acipenser persicus). Iran J Aquat Anim Heal 2:54–65CrossRefGoogle Scholar
  51. Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E (2005) Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187:3762–3778CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sun Y, Yang H, Ma R, Zhai S (2012) Does dietary administration of Lactococcus lactis modulate the gut microbiota of grouper, Epinephelus coioides. J World Aquac Soc 43:198–207CrossRefGoogle Scholar
  53. Tanaka R, Miyamoto H, Kodama H, Kawachi N, Udagawa M, Miyamoto H, Matsushita T (2010) Feed additives with thermophile-fermented compost enhance concentrations of free amino acids in the muscle of the flatfish Paralichthys olivaceus. J Gen Appl Microbiol 56:61–65CrossRefPubMedGoogle Scholar
  54. Tanaka R, Miyamoto H, Inoue SI, Shigeta K, Kondo M, Ito T, Kodama H, Miyamoto H, Matsushita T (2016) Thermophile-fermented compost as a fish feed additive modulates lipid peroxidation and free amino acid contents in the muscle of the carp, Cyprinus carpio. J Biosci Bioeng 121:530–535CrossRefPubMedGoogle Scholar
  55. Wang Y-B, Tian Z-Q, Yao J-T, Li W-F (2008) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207CrossRefGoogle Scholar
  56. Wong S, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21:3100–3102CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wu G (2013) Functional amino acids in nutrition and health. Amino Acids 45:407–411CrossRefPubMedGoogle Scholar
  58. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE 7(2):e30440.  https://doi.org/10.1371/journal.pone.0030440 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis sp. nov. and comb. nov, Shingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34:99–119Google Scholar
  60. Zhou X, Wang Y, Yao J, Li W (2010) Inhibition ability of probiotic, Lactococcus lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia (Oreochromis niloticus). Int J Eng Sci Technol 2:73–80Google Scholar

Copyright information

© Japanese Society of Fisheries Science 2018

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Agriculture and EngineeringUniversity of MiyazakiMiyazakiJapan
  2. 2.Department of Marine Biology and Environmental Sciences, Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan

Personalised recommendations