Advertisement

Mineral Waste Containing High Levels of Iron from an Environmental Disaster (Bento Rodrigues, Mariana, Brazil) is Associated with Higher Titers of Enteric Viruses

  • Gislaine Fongaro
  • Aline Viancelli
  • Deyse A. dos Reis
  • Aníbal F. Santiago
  • Marta Hernández
  • Willian Michellon
  • Maria Célia da Silva Lanna
  • Helen Treichel
  • David Rodríguez-LázaroEmail author
Original Paper

Abstract

Although the effects of heavy metals on the behavior, including infectivity, of bacteria have been studied, little information is available about their effects on enteric viruses. We report an investigation of effects on the biosynthesis of human adenoviruses (HAdV) and hepatitis A (HAV) of waters contaminated with mineral waste following an environmental disaster in Mariana City, Minas Gerais State, Brazil. The study area was affected on November 5, 2015, by 60 million m3 of mud (containing very high concentrations of iron salts) from a mining reservoir (Fundão), reaching the Gualaxo do Norte River (sites evaluated in this study), the “Rio Doce” River and finally the Atlantic Ocean. We found substantial counts of infectious HAdV and HAV (by qPCR) in all sampled sites from Gualaxo do Norte River, indicating poor basic sanitation in this area. The effects of iron on viral infection processes were evaluated using HAdV-2 and HAV-175, as DNA and RNA enteric virus models, respectively, propagated in the laboratory and exposed to this contaminated water. Experiments in field and laboratory scales found that the numbers of plaque forming units (PFU) of HAdV and HAV were significantly higher in contaminated water with high iron concentrations than in waters with low iron concentration (< 20 µg/L of iron). These findings indicate that iron can potentiate enteric virus infectivity, posing a potential risk to human and animal health, particularly during pollution disasters such as that described here in Mariana, Brazil.

Keywords

Mariana disaster Enteric viruses Heavy metals Iron infectivity Public health 

Notes

Acknowledgements

This study was financially supported by the Brazilian CNPq Project No. 472804/2013-8, and the CAPES/PDSE, and the RTA2014-00024-C04-01 from the Spanish Ministry of Economy and Innovation. We thank the Geochemistry Laboratory (LGqA/UFOP) for technical assistance.

References

  1. Aguilera, E. R., Erickson, A. K., Jesudhasan, P. R., Robinson, C. M., & Pfeiffer, J. K. (2017). Plaques formed by mutagenized viral populations have elevated coinfection frequencies. mBio, 8, e02020–e02016.CrossRefGoogle Scholar
  2. APHA. (2012). Standard methods for the examination of water and wastewater (22st ed.). Washington, DC: American Public Health Association.Google Scholar
  3. Boudaudn, M., Fréval-Le Bourdonnec, A., Jossent, J., Bakanga, F., Arnal, C., Jaffrezic, M. P., Oberti, S., & Gantzer, C. (2012). Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 46(8), 2651–2664.CrossRefGoogle Scholar
  4. Chaturvedi, U. C., Shrivastava, R., & Upreti, R. K. 2004. Viral infections and trace metals: A complex interaction. Current Science 87(11), 1536–1554.Google Scholar
  5. Cromeans, T. L., Lu, X. Y., Erdman, D. D., Humphrey, C. D., & Hill, V. R. (2008). Development of plaque assays for adenoviruses 40 and 41. Journal of Virological Methods, 151, 140–145.CrossRefGoogle Scholar
  6. Deerfield, D. W., Carter, Jr. C. W., & Pedersen, L. G. (2001). Models for protein-zinc ion binding sites. II: The catalytic sites. International Journal of Quantum Chemistry, 83, 150–165.CrossRefGoogle Scholar
  7. Dika, C., Duval, J. F., Ly-Chatain, H. M., Merlin, C., & Gantzer, C. (2011). Impact ofinternal RNA on aggregation and electrokinetics of viruses: Comparisonbetween MS2 phage and corresponding virus-like particles. Applied and Environmental Microbiology, 77(14), 4939–4948.CrossRefGoogle Scholar
  8. Fernandes, G. W., Goulart, F. F., Ranieri, B., Coelho, B. D., Dales, K., Boesche, N., et al. (2016). Deep into the mud: Ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Natureza & Conservação, 14, 35–45.CrossRefGoogle Scholar
  9. Fongaro, G., Nascimento, M. A., Rigotto, C., Ritterbusch, G., da Silva, A. D., Esteves, P. A., & Barardi, C. R. M. (2013). Evaluation and molecular characterization of human adenovirus in drinking water supplies: Viral integrity and viability assays. Virology Journal, 10, 166.CrossRefGoogle Scholar
  10. Gassilloud, B., & Gantzer, C. (2005). Adhesion-aggregation and inactivation ofpoliovirus 1 in groundwater stored in a hydrophobic container. Applied and Environmental Microbiology, 71(2), 912–920.CrossRefGoogle Scholar
  11. Goh, K. C. M., Tang, C. K., Norton, D. C., et al. (2016). Molecular determinants of plaque size as an indicator of dengue virus attenuation. Scientific Reports, 6, 26100.CrossRefGoogle Scholar
  12. Hamza, A., Jurzik, L.. Uberla, K., & Wilhelm, M. (2011). Methods to detect infectious human enteric viruses in environmental water samples. International Journal of Hygiene and Environmental Health, 214, 424–436.CrossRefGoogle Scholar
  13. Jothikumar, N., Cromeans, T. L., Sobsey, M. D., & Robertson, H. (2005). Development and evaluation of a broadly reactive TaqMan assay for rapid detection of hepatitis A virus. Applied and Environmental Microbiology, 71, 3359–3363.CrossRefGoogle Scholar
  14. Langlet, J., Gaboriaud, F., Duval, J. F. L., & Gantzer, C. (2008). Aggregation and surface properties of F-specific RNA phages: Implication for zembrane filtration processes. Water Research, 42, 2769–2777.CrossRefGoogle Scholar
  15. Otth, L., Solís, G., Wilson, M., & Fernández, H. (2005). Susceptibility of Arcobacter butzleri to heavy metals. Brazilian Journal of Microbiology, 36(3), 286–288.CrossRefGoogle Scholar
  16. Ruyters, S., Mertens, J., Vassilieva, E., Dehandschutter, B., Poffijn, A., & Smolders, E. (2011). The Red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. Environmental Science & Technology, 45, e1616–e1622.CrossRefGoogle Scholar
  17. Segura, F. R., Nunes, E. A., Paniz, F. P., et al. (2016). Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825.CrossRefGoogle Scholar
  18. Sendner, C., Horinek, D., Bocquet, L., & Netz, R. R. (2009). Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion. Langmuir, 25(18), 10768–10781.CrossRefGoogle Scholar
  19. Shrivastava, R., Upreti, R. K., Seth, P. K., & Chaturvedi, U. C. (2002). Effects of chromium on the immune system. FEMS Immunol. Medical Microbiology, 34, 1–7.Google Scholar
  20. Su, X., & D’Souza, D. H. (2011). Grape seed extract for control of human enteric viruses. Applied and Environmental Microbiology, 77(12), 3982–3987.CrossRefGoogle Scholar
  21. Viancelli, A., Garcia, L. A. T., Kunz, A., Steinmetz, R., Esteves, P. A., & Barardi, C. R. M. (2011). Detection of circoviruses and porcine adenoviruses in water samples collected from swine manure treatment systems. Research in Veterinary Science, 93, 538–543.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gislaine Fongaro
    • 1
    • 2
  • Aline Viancelli
    • 2
  • Deyse A. dos Reis
    • 3
  • Aníbal F. Santiago
    • 3
  • Marta Hernández
    • 4
    • 5
  • Willian Michellon
    • 2
  • Maria Célia da Silva Lanna
    • 3
  • Helen Treichel
    • 2
  • David Rodríguez-Lázaro
    • 5
    Email author
  1. 1.Universidade Federal da Fronteira SulErechimBrazil
  2. 2.Fundação Universidade do Contestado (PMPECSA)ConcórdiaBrazil
  3. 3.Universidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Laboratorio de Biología Molecular y MicrobiologíaITACyLValladolidSpain
  5. 5.Microbiology Section, Department of Biotechnology and Food ScienceUniversidad de BurgosBurgosSpain

Personalised recommendations