Advertisement

Food and Environmental Virology

, Volume 11, Issue 1, pp 90–95 | Cite as

Antiviral Activity of Essential Oils Against Hepatitis A Virus in Soft Fruits

  • Roberta Battistini
  • Irene Rossini
  • Carlo Ercolini
  • Maria Goria
  • Maria Rita Callipo
  • Cristiana Maurella
  • Enrico Pavoni
  • Laura SerraccaEmail author
Original Paper
  • 26 Downloads

Abstract

Berries have repeatedly been associated with outbreaks of hepatitis A virus (HAV) infection. The fruits are usually minimally processed in the food industry due to their delicate nature. While washing treatments partially remove enteric viruses, the commonly used chemical additives produce toxic by-products. A valid alternative to preserve the food safety of these products could be the use of essential oils (EOs). EOs exert antimicrobial activity and do not interfere with the nutritional characteristics of food products. We investigated the efficacy of four essential oils, lemon (Citrus limon), sweet orange (Citrus sinensis), grapefruit (Citrus paradisi), and rosemary cineole (Rosmarinus officinalis chemotype 1.8 cineole) in reducing viral loads of HAV in soft fruits. Mixed fruit berries were inoculated with 106.74 TCID50/ml of HAV, and treated with four different EOs (0.5% lemon, 0.1% sweet orange and grapefruit, and 0.05% rosemary) for 1 h at room temperature. Virus infectivity was then assessed by titration assays for its ability to grow on cell cultures. A statistically significant reduction in HAV titer on the fruit surface was observed after treating the berries with EOs of lemon (2.84 log TCID50/ml), grapefruit (2.89 log TCID50/ml), and rosemary cineole (2.94 log TCID50/ml). Rosemary cineole was the most effective EO in reducing viral titer on berries, followed by grapefruit EO. These results improve our knowledge about the antiviral activity of these EOs and highlight their potential use in fresh produce sanitation.

Keywords

Inactivation Berries Hepatitis A virus Essential oils 

Notes

Acknowledgements

This study was supported by Grants from the Italian Ministry of Health (IZS PLV 14/13).

References

  1. Baert, L., Debevere, J., & Uyttendaele, M. (2009). The efficacy of preservation methods to inactivate foodborne viruses. International Journal of Food Microbiology, 131(2–3), 83–94.Google Scholar
  2. Burnett, S. L., & Beuchat, L. R. (2001). Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. Journal of Industrial Microbiology & Biotechnology, 27(2), 104–110.Google Scholar
  3. Butot, S., Putallaz, T., & Sanchez, G. (2008). Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. International Journal of Food Microbiology, 126(1–2), 30–35.Google Scholar
  4. Carter, M. J. (2005). Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection. Journal of Applied Microbiology, 98(6), 1354–1380.Google Scholar
  5. Casteel, M. J., Schmidt, C. E., & Sobsey, M. D. (2008). Chlorine disinfection of produce to inactivate hepatitis A virus and coliphage MS2. International Journal of Food Microbiology, 125(3), 267–273.Google Scholar
  6. Chatziprodromidou, I. P., Bellou, M., Vantarakis, G., & Vantarakis, A. (2018). Viral outbreaks linked to fresh produce consumption: a systematic review. Journal of Applied Microbiology, 124(4), 932–942.Google Scholar
  7. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines (Basel), 4(3), 58.Google Scholar
  8. EFSA. (2013). Hepatitis A virus infection in four Nordic countries, 15 April 2013. Joint ECDC/EFSA rapid outbreak assessment.Google Scholar
  9. Elizaquível, P., Azizkhani, M., Aznar, R., & Sánchez, G. (2013). The effect of essential oils on norovirus surrogates. Food Control, 32(1), 275–278.Google Scholar
  10. Fabra, M. J., Castro-Mayorga, J. L., Randazzo, W., Lagarón, J. M., López-Rubio, A., Aznar, R., & Sánchez, G. (2016). Efficacy of cinnamaldehyde against enteric viruses and its activity after incorporation into biodegradable multilayer systems of interest in food packaging. Food and Environmental Virology, 8(2), 125–132.Google Scholar
  11. Felix-Valenzuela, L., Resendiz-Sandoval, M., Burgara-Estrella, A., Hernández, J., & Mata-Haro, V. (2012). Quantitative detection of hepatitis A, rotavirus and genogroup I norovirus by RT-qPCR in fresh produce from packinghouse facilities. Jounal of Food Safety, 32(4), 467–473.Google Scholar
  12. Fino, V. R., & Kniel, K. E. (2008). UV light inactivation of hepatitis A virus, Aichi virus, and feline calicivirus on strawberries, green onions and lettuce. Jounal of Food Protection, 71(5), 908–913.Google Scholar
  13. Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19(3), 156–164.Google Scholar
  14. Fitzgerald, M., Thornton, L., O’Gorman, J., O’Connor, L., Garvey, P., Boland, M., Part, A. M., et al. Hepatitis, A., Outbreak Control Team (2014). Outbreak of hepatitis A infection associated with the consumption of frozen berries, Ireland, 2013-linked to an international outbreak. Euro Surveillance, 30(43), pii: 20942. 19 ).Google Scholar
  15. Fraisse, A., Temman, S., Deboosere, N., Guillier, L., Delobel, A., Maris, P., Vialette, M., et al. (2001). Comparison of chlorine and peroxyacetic-based disinfectant to inactivate Feline calicivirus, Murine norovirus and hepatitis A virus on lettuce. International Journal of Food Microbiology, 151(1), 98–104.Google Scholar
  16. Gavanji, S., Sayedipour, S. S., Larki, B., & Bakhtari, A. (2015). Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture. Journal of Acute Medicine, 5(3), 62–68.Google Scholar
  17. Gil, M. I., Selma, M. V., López-Gálvez, F., & Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: problems and solutions. International Journal of Food Microbiology, 134(1–2), 37–45.Google Scholar
  18. Gillesberg Lassen, S., Soborg, B., Midgley, S. E., Steens, A., Vold, L., Stene-Johansen, K., Rimhanen-Finne, R., et al. (2013). Ongoing multi-strain food-borne hepatitis A outbreak with frozen berries as suspected vehicle: four Nordic countries affected, October 2012 to April 2013. Euro Surveillance, 18(17), 20467.Google Scholar
  19. Gilling, D. H., Kitajima, M., Torrey, J. R., & Bright, K. R. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. Journal of Applied Microbiology, 116(5), 1149–1163.Google Scholar
  20. Hoskins, J. M. (1975). Diagnosi virologica principi e metodi. Milano: Casa Editrice Ambrosiana.Google Scholar
  21. Joshi, S. S., Howell, A. B., & D’Souza, D. H. (2016). Reduction of enteric viruses by blueberry juice and blueberry proanthocyanidins. Food and Environmental Virology, 8(4), 235–243.Google Scholar
  22. Kim, Y. W., You, H. J., Lee, S., Kim, B., Kim, D. K., Choi, J. B., Kim, J. A., et al. (2017). Inactivation of norovirus by lemongrass essential oil using a norovirus surrogate system. Jounal of Food Protection, 80(8), 1293–1302.Google Scholar
  23. Kovač, K., Diez-Valcarce, M., Raspor, P., Hernández, M., & Rodríguez-Lázaro, D. (2012). Natural plant essential oils do not inactivate non-enveloped enteric viruses. Food and Environmental Virology, 4(4), 209–212.Google Scholar
  24. Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science & Technology, 15, 201–208.Google Scholar
  25. Laranjo, M., Fernández-Léon, A. M., Potes, M. E., Agulheiro-Santos, A. C., & Elias, M. (2017). Use of essential oils in food preservation. In Antimicrobial Research: Novel bioknowledge and educational programs (Microbiology Book Series #6) (pp. 177–188). Badajoz: Edited by A. Méndez-Vilas, Formatex Research Center. http://www.microbiology6.org/ebook.php.
  26. Lee, J. Y., Jang, S., Aguilar, L. E., Park, C. H., & Kim, C. S. (2019). Structural packaging technique using biocompatible nanofiber with essential oil to prolong the shelf-life of fruit. Journal of Nanoscience and Nanotechnology, 19(4), 2228–2231.Google Scholar
  27. Lee, M. H., Lee, B. H., Lee, S., & Choi, C. (2013). Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. Journal of Food Science, 78(9), 1412–1415.Google Scholar
  28. Li, D., Baert, L., & Uyttendaele, M. (2013). Inactivation of food-borne viruses using natural biochemical substances. Food Microbiology, 35(1), 1–9.Google Scholar
  29. Martínez, K., Ortiz, M., Albis, A., Gilma Gutiérrez Castañeda, C., Valencia, M. E., & Grande Tovar, C. D. (2018). The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules. 21,8(4).Google Scholar
  30. Maunula, L., Kaupke, A., Vasickova, P., Söderberg, K., Kozyra, I., Lazic, S., van der Poel, W. H., et al. (2013). Tracing enteric viruses in the European berry fruit supply chain. International Journal of Food Microbiology, 167(2), 177–185.Google Scholar
  31. Nieto, G. (2017). Biological activities of three essential oils of the Lamiaceae family. Medicines (Basel), 4(3), 63.Google Scholar
  32. Nolkemper, S., Reichling, J., Stintzing, F. C., Carle, R., & Schnitzler, P. (2006). Antiviral effect of aqueous extracts from species of the Laminaceae Family against Herpes simplex Virus type 1 and type 2 in vitro. Planta Medica, 72(15), 1378–1382.Google Scholar
  33. Ozogul, Y., Kuley, E., Ucar, Y., & Ozogul, F. (2015). Antimicrobial impacts of essential oils on food borne-pathogens. Recent Patents on Food, Nutrition & Agriculture, 7(1), 53–61.Google Scholar
  34. Piątkowska, E., & Rusiecka-Ziółkowska, J. (2016). Influence of essential oils on infectious agents. Advances in Clinical and Experimental Medicine, 25(5), 989–995.Google Scholar
  35. Randazzo, W., Falco, I., Aznar, R., & Sànchez, G. (2017). Effect of green tea extract on enteric viruses and its application as natural sanitizer. Food microbiology, 66, 150–156.Google Scholar
  36. Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoint. American Journal of Hygiene, 27(3), 493–497.Google Scholar
  37. Reichling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties: an overview. Forschende Komplementarmedizin, 16(2), 79–90.Google Scholar
  38. Richardson, S. (1998). Drinking water disinfection by-products. In: Encyclopedia of environmental analysis and remediation. In R. A. Meyers (Ed.), Encyclopedia of environmental analysis and remediation (Vol. 3, pp. 1398–1421). New York: Wiley.Google Scholar
  39. Sánchez, C., Aznar, R., & Sánchez, G. (2015). The effect of carvacrol on enteric viruses. International Journal of Food Microbiology, 192, 72–76.Google Scholar
  40. Sánchez, G. (2015). Processing strategies to inactivate hepatitis A virus in food products: a critical review. Comprehensive Reviews in Food Science and Food Safety, 14(6), 771–784.Google Scholar
  41. Sánchez, G., & Aznar, R. (2015). Evaluation of natural compounds of plant origin for inactivation of enteric viruses. Food and Environmental Virology, 7(2), 183–187.Google Scholar
  42. Sánchez, G., Bosch, A., & Pintó, R. M. (2007). Hepatitis A virus detection in food: current and future prospects. Letters in Applied Microbiology, 45(1), 1–5.Google Scholar
  43. Satyal, P., Jones, T. H., Lopez, E. M., McFeeters, R. L., Ali, N. A., Mansi, I., Al-Kaf, A. G., & Setzer, W. N. (2017). Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods, 6(3), 20.Google Scholar
  44. Scavia, G., Alfonsi, V., Taffon, S., Escher, M., Bruni, R., Medici, D., Pasquale, S. D., et al. National Italian Task Force On Hepatitis A (2017). A large prolonged outbreak of hepatitis A associated with consumption of frozen berries, Italy, 2013-14. Journal of medical microbiology, 66(3), 342–349.Google Scholar
  45. Serrano, M., Martinez-Romero, D., Guillén, F., Valverde, J. M., Zapata, P. J., Castillo, S., & Valero, D. (2008). The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends in Food Science & Technology, 19, 464e471.Google Scholar
  46. Sirocchi, V., Devlieghere, F., Peelman, N., Sagratini, G., Maggi, F., Vittori, S., & Ragaert, P. (2017). Effect of Rosmarinus officinalis L. essential oil combined with different packaging conditions to extend the shelf life of refrigerated beef meat. Food Chemistry, 221, 1069–1076.Google Scholar
  47. Su, X., & D’Souza, D. H. (2011). Grape seed extract for control of human enteric viruses. Applied and Environmental Microbiology, 77(12), 3982–3987.Google Scholar
  48. Tavoschi, L., Severi, E., Niskanen, T., Boelaert, F., Rizzi, V., Liebana, E., Dias, G., et al. (2015). Food-borne diseases associated with frozen berries consumption: a historical perspective, European Union, 1983 to 2013. Euro Surveillance, 20(29), 21193.Google Scholar
  49. Tullio, V., Mandras, N., Allizond, V., Nostro, V., Roana, J., Merlino, C., Banche, et al. (2012). Positive interaction of Thyme (Red) essential oil with human ply-morphonuclear granulocytes in eradicating intracellular Candida albicans. Planta Medica, 78(15), 1633–1635.Google Scholar
  50. Tzortzakis, N. G. (2007). Maintaining postharvest quality of fresh produce with volatile compounds. Innovative Food Science & Emerging Technologies, 8, 111e116.Google Scholar
  51. Ulukanli, Z., & Oz, A. T. (2015). The effect of oleum myrtle on the fruit quality of strawberries during MAP storage. Journal of Food Science and Technology, 52(5), 2860–2868.Google Scholar
  52. Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: a review. Critical Review in Food Science & Nutrition, 55(10), 1320–1323.Google Scholar
  53. Vicente, R. A., & Sozzi, G. (2007). Ripening and postharvest storage of ‘soft fruits’. Fruit, Vegetable and Cereal Science and Biotechnology, 1, 95–103.Google Scholar
  54. Yezli, S., & Otter, J. (2011). Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food and Environmental Virology, 3(1), 1–30.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’AostaTorinoItaly
  2. 2.Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia RomagnaBresciaItaly

Personalised recommendations